过电位
法拉第效率
阳极
阴极
材料科学
化学工程
电解质
电池(电)
纳米技术
电极
电化学
化学
工程类
物理
物理化学
功率(物理)
量子力学
作者
Yixiang Zhang,Lequan Wang,Qingyun Li,Bo Hu,Junming Kang,Yuhuan Meng,Zedong Zhao,Hongbin Lu
标识
DOI:10.1007/s40820-022-00948-9
摘要
The anode-free design is a promising strategy to increase the energy density of aqueous Zn metal batteries (AZMBs). However, the scarcity of Zn-rich cathodes and the rapid loss of limited Zn greatly hinder their commercial applications. To address these issues, a novel anode-free Zn-iodine battery (AFZIB) was designed via a simple, low-cost and scalable approach. Iodine plays bifunctional roles in improving the AFZIB overall performance: enabling high-performance Zn-rich cathode and modulating Zn deposition behavior. On the cathode side, the ZnI2 serves as Zn-rich cathode material. The graphene/polyvinyl pyrrolidone heterostructure was employed as an efficient host for ZnI2 to enhance electron conductivity and suppress the shuttle effect of iodine species. On the anode side, trace I3- additive in the electrolyte creates surface reconstruction on the commercial Cu foil. The in situ formed zincophilic Cu nanocluster allows ultralow-overpotential and uniform Zn deposition and superior reversibility (average coulombic efficiency > 99.91% over 7,000 cycles). Based on such a configuration, AFZIB exhibits significantly increased energy density (162 Wh kg-1) and durable cycle stability (63.8% capacity retention after 200 cycles) under practical application conditions. Considering the low cost and simple preparation methods of the electrode materials, this work paves the way for the practical application of AZMBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI