A Deep Learning Classifier Based on Pre-Radiation Computed Tomography and Clinical Parameters to Predict Pathological Complete Response after Neoadjuvant Chemoradiation in Esophageal Cancer

医学 食管癌 放射治疗 接收机工作特性 放射科 新辅助治疗 病态的 癌症 内科学 乳腺癌
作者
Y. Liu,Y. Men,Z. Ma,X. Yang,S. Sun,M. Yuan,Y.R. Zhai,W. Liu,L. Yin,K. Men,L. Xue,Z. Hui
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:114 (3): e163-e163
标识
DOI:10.1016/j.ijrobp.2022.07.1036
摘要

Purpose/Objective(s)

Neoadjuvant chemoradiation (NCRT) followed by surgery is the standard treatment for resectable esophageal cancer. More than 30% patients achieve pathological complete response (pCR) after NCRT, who may avoid the followed surgery. However, there is no reliable method in predicting pCR yet. Artificial intelligence, especially deep learning, has made great progress in many fields including treatment response prediction. Therefore, we built up a deep learning classifier based on pre-radiation computed tomography and clinical parameters to predict pCR after NCRT for esophageal cancer.

Materials/Methods

Between 2009 and 2021, consecutive patients with esophageal cancer received NCRT and complete resection were retrospectively analyzed. Pathological response assessed on surgical specimen was collected. Patients were randomly assigned to the training set, validation set, and testing set as 7: 1: 2. We built a binary classification neural network based on 3D Resnet. Pre-radiation computed tomography (CT) was fed as input to build the imaging classifier. The filtered clinical parameters including gender, tumor location, clinical stage, pathological type, sequence of chemoradiation, chemotherapy regimen and radiotherapy technique were then added by encoded as fully connected layer to build the combined classifier. Area under the receiver operating characteristic curve (AUC) was calculated to evaluate the prediction performance and the optimal cut-off point was determined by Youden index.

Results

Totally 279 patients were enrolled, of whom 93 achieved pCR (33.3%). The performances of imaging classifier were AUC=0.989 (95% CI 0.937-0.986) with the sensitivity of 98.6% and specificity of 98.5% in the training set, and AUC=0.649 (95% CI 0.481-0.660) with the sensitivity of 66.7% and specificity of 58.9% in the testing set, respectively. After the addition of clinical parameters, the combined classifier showed AUC=0.855 (95% CI 0.797-0.986) with the sensitivity of 82.4% and specificity of 74.3% in the training set, and AUC=0.731 (95%CI 0.631-0.819) with the sensitivity of 76.6% and specificity of 65.6% in the testing set, respectively.

Conclusion

The combined deep learning classifier can accurately predict pCR after NCRT for esophageal cancer. Besides, addition of necessary clinical parameters can remedy the overfitting of imaging classifier. Prospective exploration based on larger data sets is needed to further improve the accuracy and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞舞的青鱼完成签到,获得积分10
2秒前
小刚完成签到,获得积分0
2秒前
今后应助自然的雅琴采纳,获得20
4秒前
Ssyong完成签到 ,获得积分10
4秒前
空洛完成签到 ,获得积分10
5秒前
huche完成签到,获得积分10
5秒前
皓轩完成签到 ,获得积分10
6秒前
儒雅棒球完成签到,获得积分10
10秒前
蓝枫完成签到,获得积分10
12秒前
adamchris完成签到,获得积分10
12秒前
ko1完成签到 ,获得积分10
13秒前
清漪完成签到,获得积分10
13秒前
雨晴完成签到,获得积分10
14秒前
18秒前
卡乐瑞咩吹可完成签到,获得积分10
21秒前
小木子发布了新的文献求助10
22秒前
zqlxueli完成签到 ,获得积分10
24秒前
淡淡向日葵完成签到 ,获得积分10
24秒前
cttc完成签到,获得积分10
25秒前
勤奋的如松完成签到,获得积分10
26秒前
慕冰蝶完成签到,获得积分20
26秒前
ttt完成签到,获得积分10
32秒前
zz完成签到,获得积分10
37秒前
李健应助圆圆方方采纳,获得10
37秒前
Lori完成签到,获得积分10
39秒前
Yjh完成签到,获得积分10
42秒前
42秒前
44秒前
xu完成签到 ,获得积分10
45秒前
研友_841oDL完成签到,获得积分10
46秒前
赘婿应助小木子采纳,获得10
47秒前
KKWeng发布了新的文献求助100
48秒前
月亮上的猫完成签到,获得积分10
54秒前
...完成签到 ,获得积分10
55秒前
七月星河完成签到 ,获得积分10
56秒前
娃哈哈完成签到 ,获得积分10
56秒前
liusaiya完成签到 ,获得积分10
56秒前
拓跋傲薇完成签到,获得积分10
58秒前
风犬少年完成签到,获得积分10
58秒前
今后应助Yjh采纳,获得10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137101
求助须知:如何正确求助?哪些是违规求助? 2788086
关于积分的说明 7784523
捐赠科研通 2444109
什么是DOI,文献DOI怎么找? 1299758
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011