亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Deep Learning Classifier Based on Pre-Radiation Computed Tomography and Clinical Parameters to Predict Pathological Complete Response after Neoadjuvant Chemoradiation in Esophageal Cancer

医学 食管癌 放射治疗 接收机工作特性 放射科 人工智能 癌症 内科学 计算机科学
作者
Y. Liu,Y. Men,Z. Ma,X. Yang,S. Sun,M. Yuan,Yihai Zhai,W. Liu,L. Yin,K. Men,L. Xue,Z. Hui
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:114 (3): e163-e163
标识
DOI:10.1016/j.ijrobp.2022.07.1036
摘要

Purpose/Objective(s)

Neoadjuvant chemoradiation (NCRT) followed by surgery is the standard treatment for resectable esophageal cancer. More than 30% patients achieve pathological complete response (pCR) after NCRT, who may avoid the followed surgery. However, there is no reliable method in predicting pCR yet. Artificial intelligence, especially deep learning, has made great progress in many fields including treatment response prediction. Therefore, we built up a deep learning classifier based on pre-radiation computed tomography and clinical parameters to predict pCR after NCRT for esophageal cancer.

Materials/Methods

Between 2009 and 2021, consecutive patients with esophageal cancer received NCRT and complete resection were retrospectively analyzed. Pathological response assessed on surgical specimen was collected. Patients were randomly assigned to the training set, validation set, and testing set as 7: 1: 2. We built a binary classification neural network based on 3D Resnet. Pre-radiation computed tomography (CT) was fed as input to build the imaging classifier. The filtered clinical parameters including gender, tumor location, clinical stage, pathological type, sequence of chemoradiation, chemotherapy regimen and radiotherapy technique were then added by encoded as fully connected layer to build the combined classifier. Area under the receiver operating characteristic curve (AUC) was calculated to evaluate the prediction performance and the optimal cut-off point was determined by Youden index.

Results

Totally 279 patients were enrolled, of whom 93 achieved pCR (33.3%). The performances of imaging classifier were AUC=0.989 (95% CI 0.937-0.986) with the sensitivity of 98.6% and specificity of 98.5% in the training set, and AUC=0.649 (95% CI 0.481-0.660) with the sensitivity of 66.7% and specificity of 58.9% in the testing set, respectively. After the addition of clinical parameters, the combined classifier showed AUC=0.855 (95% CI 0.797-0.986) with the sensitivity of 82.4% and specificity of 74.3% in the training set, and AUC=0.731 (95%CI 0.631-0.819) with the sensitivity of 76.6% and specificity of 65.6% in the testing set, respectively.

Conclusion

The combined deep learning classifier can accurately predict pCR after NCRT for esophageal cancer. Besides, addition of necessary clinical parameters can remedy the overfitting of imaging classifier. Prospective exploration based on larger data sets is needed to further improve the accuracy and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愉快的犀牛完成签到 ,获得积分10
22秒前
32秒前
35秒前
学分完成签到 ,获得积分10
36秒前
zilhua发布了新的文献求助10
39秒前
39秒前
zilhua完成签到,获得积分10
45秒前
CodeCraft应助科研通管家采纳,获得10
50秒前
ASXC完成签到,获得积分20
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助30
1分钟前
Vaseegara完成签到 ,获得积分10
1分钟前
1分钟前
wanci应助zzzxh采纳,获得10
1分钟前
1分钟前
RAIN发布了新的文献求助10
1分钟前
852应助RAIN采纳,获得10
2分钟前
2分钟前
小飞猪发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
yx_cheng应助科研通管家采纳,获得30
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
4分钟前
所所应助科研通管家采纳,获得10
4分钟前
大模型应助科研通管家采纳,获得10
4分钟前
Milton_z完成签到 ,获得积分0
5分钟前
冬菇拉米发布了新的文献求助10
5分钟前
5分钟前
FashionBoy应助冬菇拉米采纳,获得10
5分钟前
wujiwuhui完成签到 ,获得积分10
5分钟前
大意的晓亦完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
TXZ06完成签到,获得积分10
6分钟前
duyitao完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
隐形曼青应助科研通管家采纳,获得10
6分钟前
yx_cheng应助科研通管家采纳,获得10
6分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008067
求助须知:如何正确求助?哪些是违规求助? 3547878
关于积分的说明 11298611
捐赠科研通 3282850
什么是DOI,文献DOI怎么找? 1810216
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188