A Deep Learning Classifier Based on Pre-Radiation Computed Tomography and Clinical Parameters to Predict Pathological Complete Response after Neoadjuvant Chemoradiation in Esophageal Cancer

医学 食管癌 放射治疗 接收机工作特性 放射科 人工智能 癌症 内科学 计算机科学
作者
Y. Liu,Y. Men,Z. Ma,X. Yang,S. Sun,M. Yuan,Yihai Zhai,W. Liu,L. Yin,K. Men,L. Xue,Z. Hui
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:114 (3): e163-e163
标识
DOI:10.1016/j.ijrobp.2022.07.1036
摘要

Purpose/Objective(s)

Neoadjuvant chemoradiation (NCRT) followed by surgery is the standard treatment for resectable esophageal cancer. More than 30% patients achieve pathological complete response (pCR) after NCRT, who may avoid the followed surgery. However, there is no reliable method in predicting pCR yet. Artificial intelligence, especially deep learning, has made great progress in many fields including treatment response prediction. Therefore, we built up a deep learning classifier based on pre-radiation computed tomography and clinical parameters to predict pCR after NCRT for esophageal cancer.

Materials/Methods

Between 2009 and 2021, consecutive patients with esophageal cancer received NCRT and complete resection were retrospectively analyzed. Pathological response assessed on surgical specimen was collected. Patients were randomly assigned to the training set, validation set, and testing set as 7: 1: 2. We built a binary classification neural network based on 3D Resnet. Pre-radiation computed tomography (CT) was fed as input to build the imaging classifier. The filtered clinical parameters including gender, tumor location, clinical stage, pathological type, sequence of chemoradiation, chemotherapy regimen and radiotherapy technique were then added by encoded as fully connected layer to build the combined classifier. Area under the receiver operating characteristic curve (AUC) was calculated to evaluate the prediction performance and the optimal cut-off point was determined by Youden index.

Results

Totally 279 patients were enrolled, of whom 93 achieved pCR (33.3%). The performances of imaging classifier were AUC=0.989 (95% CI 0.937-0.986) with the sensitivity of 98.6% and specificity of 98.5% in the training set, and AUC=0.649 (95% CI 0.481-0.660) with the sensitivity of 66.7% and specificity of 58.9% in the testing set, respectively. After the addition of clinical parameters, the combined classifier showed AUC=0.855 (95% CI 0.797-0.986) with the sensitivity of 82.4% and specificity of 74.3% in the training set, and AUC=0.731 (95%CI 0.631-0.819) with the sensitivity of 76.6% and specificity of 65.6% in the testing set, respectively.

Conclusion

The combined deep learning classifier can accurately predict pCR after NCRT for esophageal cancer. Besides, addition of necessary clinical parameters can remedy the overfitting of imaging classifier. Prospective exploration based on larger data sets is needed to further improve the accuracy and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
薰衣草发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
1秒前
1秒前
要减肥山槐完成签到,获得积分10
2秒前
默笙完成签到,获得积分10
2秒前
麦辣堡完成签到,获得积分10
2秒前
传奇3应助Li采纳,获得10
2秒前
浮游应助ZhouY采纳,获得20
3秒前
3秒前
暮色完成签到,获得积分10
3秒前
xf完成签到,获得积分10
3秒前
缥缈冷珍关注了科研通微信公众号
3秒前
4秒前
dengchao发布了新的文献求助10
4秒前
4秒前
flash发布了新的文献求助10
5秒前
好困芽发布了新的文献求助10
5秒前
今夜明珠色完成签到,获得积分10
5秒前
cfy完成签到,获得积分10
5秒前
RedBoy发布了新的文献求助10
5秒前
6秒前
6秒前
苏煜杰发布了新的文献求助10
7秒前
xxxllllll发布了新的文献求助10
8秒前
8秒前
lsl发布了新的文献求助10
9秒前
科研通AI6应助大哥怒据说采纳,获得10
9秒前
wxj完成签到,获得积分20
9秒前
10秒前
12秒前
风吹麦浪发布了新的文献求助10
13秒前
丰富的小甜瓜完成签到,获得积分10
13秒前
桐桐应助大眼瞪小眼采纳,获得10
14秒前
莱比锡大学优秀毕业生完成签到,获得积分20
14秒前
RedBoy完成签到,获得积分10
15秒前
彩色纸飞机完成签到 ,获得积分10
15秒前
Zx_1993应助Snoopy采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074229
求助须知:如何正确求助?哪些是违规求助? 4294374
关于积分的说明 13381128
捐赠科研通 4115792
什么是DOI,文献DOI怎么找? 2253873
邀请新用户注册赠送积分活动 1258494
关于科研通互助平台的介绍 1191343