Prototype early diagnostic model for invasive pulmonary aspergillosis based on deep learning and big data training

人工智能 试验装置 深度学习 训练集 诊断模型 肺炎 机器学习 计算机科学 放射科 医学 数据挖掘 内科学
作者
Wei Wang,Mujiao Li,Fan Pei-min,Hua Wang,Jing Cai,Kai Wang,Tao Zhang,Zelin Xiao,Jingdong Yan,Chaomin Chen,Qingwen Lv
出处
期刊:Mycoses [Wiley]
卷期号:66 (2): 118-127 被引量:11
标识
DOI:10.1111/myc.13540
摘要

Currently, the diagnosis of invasive pulmonary aspergillosis (IPA) mainly depends on the integration of clinical, radiological and microbiological data. Artificial intelligence (AI) has shown great advantages in dealing with data-rich biological and medical challenges, but the literature on IPA diagnosis is rare.This study aimed to provide a non-invasive, objective and easy-to-use AI approach for the early diagnosis of IPA.We generated a prototype diagnostic deep learning model (IPA-NET) comprising three interrelated computation modules for the automatic diagnosis of IPA. First, IPA-NET was subjected to transfer learning using 300,000 CT images of non-fungal pneumonia from an online database. Second, training and internal test sets, including clinical features and chest CT images of patients with IPA and non-fungal pneumonia in the early stage of the disease, were independently constructed for model training and internal verification. Third, the model was further validated using an external test set.IPA-NET showed a marked diagnostic performance for IPA as verified by the internal test set, with an accuracy of 96.8%, a sensitivity of 0.98, a specificity of 0.96 and an area under the curve (AUC) of 0.99. When further validated using the external test set, IPA-NET showed an accuracy of 89.7%, a sensitivity of 0.88, a specificity of 0.91 and an AUC of 0.95.This novel deep learning model provides a non-invasive, objective and reliable method for the early diagnosis of IPA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小蘑菇应助hang采纳,获得10
2秒前
4秒前
6秒前
小娟子发布了新的文献求助10
7秒前
wqxm完成签到,获得积分10
9秒前
万能图书馆应助蝶衣采纳,获得30
9秒前
月光入梦发布了新的文献求助10
11秒前
呼呼哈哈完成签到,获得积分10
11秒前
leo_zjm发布了新的文献求助10
12秒前
慕吹完成签到,获得积分10
12秒前
大水发布了新的文献求助10
12秒前
ddd应助Rqbnicsp采纳,获得30
14秒前
14秒前
17秒前
18秒前
大意的绿蓉完成签到,获得积分10
18秒前
隐形曼青应助gym采纳,获得10
19秒前
量子星尘发布了新的文献求助10
20秒前
johnz001完成签到,获得积分10
20秒前
leo_zjm完成签到,获得积分10
23秒前
24秒前
Jennie发布了新的文献求助10
24秒前
25秒前
Rqbnicsp完成签到,获得积分10
25秒前
lanheqingniao发布了新的文献求助10
26秒前
x夏天完成签到 ,获得积分10
26秒前
Ys发布了新的文献求助10
27秒前
27秒前
28秒前
小确幸完成签到,获得积分10
28秒前
852应助依依采纳,获得10
28秒前
半眠日记完成签到,获得积分20
30秒前
32秒前
完美世界应助斯文尔阳采纳,获得10
32秒前
猪猪hero应助积极松鼠采纳,获得10
32秒前
黑压压的帝企鹅完成签到,获得积分10
33秒前
34秒前
标致的耷发布了新的文献求助10
34秒前
zhaosh完成签到,获得积分10
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956715
求助须知:如何正确求助?哪些是违规求助? 3502823
关于积分的说明 11110282
捐赠科研通 3233774
什么是DOI,文献DOI怎么找? 1787498
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802172