Computational Modeling of PROTAC Ternary Complexes and Linker Design

连接器 三元络合物 计算机科学 化学空间 生化工程 药物发现 计算生物学 化学 工程类 生物 生物化学 操作系统
作者
Sven A. Miller,Grigorii Andrianov,Victoria Mischley,Khadija A. Wharton,Jesse J. Chen,John Karanicolas
标识
DOI:10.1002/9783527836208.ch5
摘要

Proteolysis targeting chimeras (PROTACs) are heterobifunctional ligands that promote targeted protein degradation (TPD) by reprogramming E3 ubiquitin ligase activity. By affixing an E3-recruiting moiety onto an existing target-binding warhead, many known inhibitors can now be repurposed as degraders of their protein targets. Historically, developing a PROTAC has been an empirical process, requiring extensive medicinal chemistry optimization to achieve efficient target degradation. A key hurdle has been identifying the specific chemical linker to use in tethering the two functional components of the PROTAC to one another (referred to as “linkerology”). Given that multiple E3 ligases can be used for building a PROTAC, coupled with a vast diversity of linker lengths and compositions, the challenge to explore the huge potential chemical space available in PROTAC design quickly becomes apparent. To address this, multiple computational approaches have recently been developed: these can be used to rapidly screen the vast chemical space of potential PROTACs for degrading a given target protein. These methods typically aim to model the structure of the PROTAC-induced ternary complex; formation of this complex is thought to be the key step in effective degradation. In this chapter, we summarize computational approaches that have proven effective for retrospective ternary complex modeling in benchmark experiments, and we describe emerging deep learning/artificial intelligence methods for de novo linker construction. Our perspective emphasizes the biophysical underpinnings of ternary complex formation and how these inform PROTAC design. In light of multiple PROTACs' rapid advance approaching and into the clinic, improved methods for designing effective degraders are expected to accelerate the development of chemical tools for research and new classes of therapeutics in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
康康星完成签到,获得积分10
刚刚
1秒前
1秒前
去有风的地方完成签到 ,获得积分10
4秒前
上下完成签到 ,获得积分10
6秒前
王娟秀完成签到 ,获得积分10
7秒前
YL完成签到,获得积分10
9秒前
NexusExplorer应助小王采纳,获得10
10秒前
10秒前
sl完成签到,获得积分10
10秒前
CC完成签到,获得积分10
11秒前
自信松思完成签到 ,获得积分10
12秒前
荣枫完成签到,获得积分10
12秒前
12秒前
火火火木完成签到 ,获得积分10
13秒前
大模型应助妖孽宇采纳,获得10
13秒前
15秒前
积极行天发布了新的文献求助50
15秒前
受伤凌蝶发布了新的文献求助10
18秒前
fusucheng完成签到,获得积分10
19秒前
koi完成签到,获得积分20
19秒前
19秒前
聪明摩托完成签到,获得积分10
19秒前
阿纯完成签到,获得积分10
20秒前
21秒前
肱二头肌完成签到,获得积分10
22秒前
23秒前
小王发布了新的文献求助10
23秒前
多情自古空余恨完成签到,获得积分10
24秒前
Qionglin完成签到,获得积分10
26秒前
Bao完成签到 ,获得积分10
27秒前
27秒前
初夏微凉发布了新的文献求助30
27秒前
28秒前
书霂完成签到,获得积分10
28秒前
优秀含羞草完成签到,获得积分10
29秒前
宓沂完成签到,获得积分10
29秒前
vivre223完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助10
30秒前
受伤凌蝶完成签到,获得积分10
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029