Computational Modeling of PROTAC Ternary Complexes and Linker Design

连接器 三元络合物 计算机科学 化学空间 生化工程 药物发现 计算生物学 化学 工程类 生物 生物化学 操作系统
作者
Sven A. Miller,Grigorii Andrianov,Victoria Mischley,Khadija A. Wharton,Jesse J. Chen,John Karanicolas
标识
DOI:10.1002/9783527836208.ch5
摘要

Proteolysis targeting chimeras (PROTACs) are heterobifunctional ligands that promote targeted protein degradation (TPD) by reprogramming E3 ubiquitin ligase activity. By affixing an E3-recruiting moiety onto an existing target-binding warhead, many known inhibitors can now be repurposed as degraders of their protein targets. Historically, developing a PROTAC has been an empirical process, requiring extensive medicinal chemistry optimization to achieve efficient target degradation. A key hurdle has been identifying the specific chemical linker to use in tethering the two functional components of the PROTAC to one another (referred to as “linkerology”). Given that multiple E3 ligases can be used for building a PROTAC, coupled with a vast diversity of linker lengths and compositions, the challenge to explore the huge potential chemical space available in PROTAC design quickly becomes apparent. To address this, multiple computational approaches have recently been developed: these can be used to rapidly screen the vast chemical space of potential PROTACs for degrading a given target protein. These methods typically aim to model the structure of the PROTAC-induced ternary complex; formation of this complex is thought to be the key step in effective degradation. In this chapter, we summarize computational approaches that have proven effective for retrospective ternary complex modeling in benchmark experiments, and we describe emerging deep learning/artificial intelligence methods for de novo linker construction. Our perspective emphasizes the biophysical underpinnings of ternary complex formation and how these inform PROTAC design. In light of multiple PROTACs' rapid advance approaching and into the clinic, improved methods for designing effective degraders are expected to accelerate the development of chemical tools for research and new classes of therapeutics in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
皮肤科王东明完成签到,获得积分10
3秒前
黑大帅发布了新的文献求助10
4秒前
5秒前
所所应助皮肤科王东明采纳,获得10
5秒前
ww完成签到,获得积分10
6秒前
闾丘剑封发布了新的文献求助10
8秒前
智慧者发布了新的文献求助10
8秒前
银杏完成签到 ,获得积分10
8秒前
9秒前
基尔霍夫完成签到,获得积分10
10秒前
11秒前
sss2021发布了新的文献求助20
11秒前
12秒前
lzx发布了新的文献求助10
16秒前
学不会发布了新的文献求助10
16秒前
枫叶问海棠完成签到,获得积分20
20秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
为妳铭记完成签到 ,获得积分10
21秒前
21秒前
21秒前
葉鳳怡完成签到 ,获得积分10
23秒前
学不会完成签到,获得积分10
23秒前
26秒前
西风白马完成签到,获得积分10
26秒前
26秒前
30秒前
31秒前
32秒前
小蘑菇应助lzx采纳,获得10
33秒前
酷波er应助科研通管家采纳,获得10
34秒前
大模型应助科研通管家采纳,获得10
34秒前
斯文败类应助科研通管家采纳,获得10
34秒前
星辰大海应助科研通管家采纳,获得10
34秒前
CodeCraft应助科研通管家采纳,获得10
34秒前
Owen应助科研通管家采纳,获得10
34秒前
彭于晏应助科研通管家采纳,获得10
34秒前
烟花应助科研通管家采纳,获得10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174