Computational Modeling of PROTAC Ternary Complexes and Linker Design

连接器 三元络合物 计算机科学 化学空间 生化工程 药物发现 计算生物学 化学 工程类 生物 生物化学 操作系统
作者
Sven A. Miller,Grigorii Andrianov,Victoria Mischley,Khadija A. Wharton,Jesse J. Chen,John Karanicolas
标识
DOI:10.1002/9783527836208.ch5
摘要

Proteolysis targeting chimeras (PROTACs) are heterobifunctional ligands that promote targeted protein degradation (TPD) by reprogramming E3 ubiquitin ligase activity. By affixing an E3-recruiting moiety onto an existing target-binding warhead, many known inhibitors can now be repurposed as degraders of their protein targets. Historically, developing a PROTAC has been an empirical process, requiring extensive medicinal chemistry optimization to achieve efficient target degradation. A key hurdle has been identifying the specific chemical linker to use in tethering the two functional components of the PROTAC to one another (referred to as “linkerology”). Given that multiple E3 ligases can be used for building a PROTAC, coupled with a vast diversity of linker lengths and compositions, the challenge to explore the huge potential chemical space available in PROTAC design quickly becomes apparent. To address this, multiple computational approaches have recently been developed: these can be used to rapidly screen the vast chemical space of potential PROTACs for degrading a given target protein. These methods typically aim to model the structure of the PROTAC-induced ternary complex; formation of this complex is thought to be the key step in effective degradation. In this chapter, we summarize computational approaches that have proven effective for retrospective ternary complex modeling in benchmark experiments, and we describe emerging deep learning/artificial intelligence methods for de novo linker construction. Our perspective emphasizes the biophysical underpinnings of ternary complex formation and how these inform PROTAC design. In light of multiple PROTACs' rapid advance approaching and into the clinic, improved methods for designing effective degraders are expected to accelerate the development of chemical tools for research and new classes of therapeutics in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
佛人世间完成签到,获得积分10
刚刚
科研通AI6应助ljact采纳,获得10
2秒前
情怀应助Zhu1985采纳,获得10
2秒前
FashionBoy应助内向的昊焱采纳,获得10
2秒前
科研通AI6应助内向的昊焱采纳,获得10
2秒前
无花果应助文艺的草莓采纳,获得10
2秒前
ycy发布了新的文献求助10
3秒前
5秒前
5秒前
6秒前
Ava应助ddizi采纳,获得30
6秒前
6秒前
小池同学完成签到,获得积分10
7秒前
科研通AI6应助121311采纳,获得10
8秒前
Carolin发布了新的文献求助10
8秒前
谦让涵菡完成签到 ,获得积分10
9秒前
王耀武完成签到,获得积分10
9秒前
朴素念之完成签到,获得积分20
10秒前
10秒前
学术裁缝发布了新的文献求助10
10秒前
连冬萱发布了新的文献求助10
10秒前
ruby完成签到,获得积分10
10秒前
大魔王完成签到 ,获得积分10
11秒前
zhang完成签到,获得积分10
11秒前
YW发布了新的文献求助30
11秒前
xg发布了新的文献求助10
12秒前
13秒前
14秒前
15秒前
踏实绮露完成签到 ,获得积分10
15秒前
15秒前
iam小羊人完成签到,获得积分20
16秒前
16秒前
17秒前
失眠无声完成签到,获得积分10
17秒前
Jiang完成签到,获得积分10
18秒前
大模型应助称心的乘云采纳,获得10
18秒前
桐桐应助lw采纳,获得10
19秒前
19秒前
Hello应助连冬萱采纳,获得30
20秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226726
求助须知:如何正确求助?哪些是违规求助? 4398101
关于积分的说明 13688414
捐赠科研通 4262779
什么是DOI,文献DOI怎么找? 2339284
邀请新用户注册赠送积分活动 1336666
关于科研通互助平台的介绍 1292702