Wing jig shape optimisation with gradient-assisted metamodel building in a trust-region optimisation framework

元建模 水准点(测量) 稳健性(进化) 数学优化 计算机科学 工程设计过程 算法 数学 工程类 结构工程 机械工程 地理 程序设计语言 化学 基因 生物化学 大地测量学
作者
Yu Zhang,Dongsheng Jia,Elliot K. Bontoft,Vassili Toropov
出处
期刊:Structural and Multidisciplinary Optimization [Springer Science+Business Media]
卷期号:65 (12) 被引量:5
标识
DOI:10.1007/s00158-022-03453-0
摘要

Abstract Significant computational resources are required to obtain an optimised wing jig shape by solving a high-fidelity large-scale aero-structural design optimisation problem. Gradient-based methods are efficient; however, some of the features of real-life engineering problems including numerical noise that pollutes the function values and occurrences of failed evaluations in the optimisation may limit their performance. To address these issues, this paper presents the latest developments in the multipoint approximation method (MAM) based on a gradient-assisted metamodel assembly technique within a trust-region optimisation framework. The proposed method is tested by a benchmark case first, and then, an aircraft wing jig shape optimisation problem is offered to demonstrate its performance. The gradient-based optimisation is used as a benchmark case, and the metamodel-based optimisation utilises the latest developments in MAM to solve the same problem. The results show that the proposed method can achieve the same design goal as the gradient-based method but with enhanced robustness and efficient performance. In the wing jig shape optimisation, the difference in the design objective, the global equivalent drag coefficient, between the two aforementioned optimisation approaches is 0.20 counts, whose relative difference is approximately 0.10%. Three approximate sub-optimisations have been conducted in every iteration of the metamodel-based optimisation to reduce the possibility of local optimality, while the overall elapsed time of the metamodel-based optimisation is approximately 1.98 times that of one gradient-based optimisation, which confirms the competitiveness of the proposed method bearing in mind the added safeguards for numerical noise, failed evaluations and possible local optimality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定访琴发布了新的文献求助30
刚刚
why发布了新的文献求助10
刚刚
美丽的凌蝶完成签到,获得积分10
3秒前
正直画笔完成签到 ,获得积分10
3秒前
4秒前
ekm7k发布了新的文献求助30
4秒前
4秒前
浅斟低唱发布了新的文献求助10
7秒前
biyeshunli发布了新的文献求助10
7秒前
8秒前
忧郁的猕猴桃完成签到,获得积分10
9秒前
自信夜春发布了新的文献求助10
9秒前
bbanshan完成签到,获得积分10
9秒前
10秒前
zhouleibio完成签到,获得积分10
11秒前
王路飞发布了新的文献求助10
13秒前
随风完成签到,获得积分10
13秒前
星辰大海应助淡定访琴采纳,获得30
13秒前
勤劳元瑶完成签到,获得积分10
13秒前
自信夜春完成签到,获得积分10
15秒前
Panchael完成签到,获得积分10
16秒前
17秒前
for_abSCI完成签到,获得积分10
17秒前
kellen完成签到,获得积分10
17秒前
莱芙完成签到 ,获得积分10
17秒前
18秒前
调调单单发布了新的文献求助10
19秒前
科研小螃蟹完成签到,获得积分0
20秒前
今后应助浅斟低唱采纳,获得150
20秒前
领导范儿应助666采纳,获得10
20秒前
蒲蒲完成签到 ,获得积分10
21秒前
苏南完成签到 ,获得积分10
21秒前
Junly完成签到 ,获得积分10
22秒前
贪玩星完成签到,获得积分10
23秒前
风吹麦浪发布了新的文献求助10
23秒前
sylvia完成签到,获得积分10
26秒前
26秒前
27秒前
27秒前
落寞溪灵完成签到 ,获得积分10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671625
求助须知:如何正确求助?哪些是违规求助? 3228325
关于积分的说明 9779625
捐赠科研通 2938636
什么是DOI,文献DOI怎么找? 1610180
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093