Wing jig shape optimisation with gradient-assisted metamodel building in a trust-region optimisation framework

元建模 水准点(测量) 稳健性(进化) 数学优化 计算机科学 工程设计过程 算法 数学 工程类 结构工程 机械工程 地理 程序设计语言 化学 基因 生物化学 大地测量学
作者
Yu Zhang,Dongsheng Jia,Elliot K. Bontoft,Vassili Toropov
出处
期刊:Structural and Multidisciplinary Optimization [Springer Science+Business Media]
卷期号:65 (12) 被引量:5
标识
DOI:10.1007/s00158-022-03453-0
摘要

Abstract Significant computational resources are required to obtain an optimised wing jig shape by solving a high-fidelity large-scale aero-structural design optimisation problem. Gradient-based methods are efficient; however, some of the features of real-life engineering problems including numerical noise that pollutes the function values and occurrences of failed evaluations in the optimisation may limit their performance. To address these issues, this paper presents the latest developments in the multipoint approximation method (MAM) based on a gradient-assisted metamodel assembly technique within a trust-region optimisation framework. The proposed method is tested by a benchmark case first, and then, an aircraft wing jig shape optimisation problem is offered to demonstrate its performance. The gradient-based optimisation is used as a benchmark case, and the metamodel-based optimisation utilises the latest developments in MAM to solve the same problem. The results show that the proposed method can achieve the same design goal as the gradient-based method but with enhanced robustness and efficient performance. In the wing jig shape optimisation, the difference in the design objective, the global equivalent drag coefficient, between the two aforementioned optimisation approaches is 0.20 counts, whose relative difference is approximately 0.10%. Three approximate sub-optimisations have been conducted in every iteration of the metamodel-based optimisation to reduce the possibility of local optimality, while the overall elapsed time of the metamodel-based optimisation is approximately 1.98 times that of one gradient-based optimisation, which confirms the competitiveness of the proposed method bearing in mind the added safeguards for numerical noise, failed evaluations and possible local optimality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zzzzz给zzzzz的求助进行了留言
刚刚
梦在远方完成签到 ,获得积分10
刚刚
1秒前
烟花应助牛牛采纳,获得10
1秒前
满意的山水完成签到,获得积分20
3秒前
3秒前
lcx66666发布了新的文献求助10
3秒前
DONG完成签到,获得积分10
3秒前
完美世界应助十六采纳,获得10
3秒前
0411345完成签到,获得积分10
3秒前
4秒前
猪嗝铁铁完成签到 ,获得积分10
4秒前
无尽夏完成签到,获得积分10
4秒前
累哥发布了新的文献求助10
4秒前
YK发布了新的文献求助10
4秒前
Caicai发布了新的文献求助10
4秒前
kasumin发布了新的文献求助10
5秒前
skr完成签到,获得积分10
5秒前
5秒前
可可发布了新的文献求助10
5秒前
酷波er应助坚强幼荷采纳,获得10
5秒前
6秒前
ZJCGD完成签到,获得积分10
6秒前
甘蔗侠完成签到,获得积分20
6秒前
@@@发布了新的文献求助10
6秒前
skskysky完成签到,获得积分10
7秒前
7秒前
microtsiu完成签到,获得积分10
7秒前
8秒前
Zero_榊啸号完成签到,获得积分10
8秒前
wanci应助Du采纳,获得10
8秒前
Akim应助李永波采纳,获得10
8秒前
9秒前
9秒前
缓慢易云发布了新的文献求助10
10秒前
10秒前
大个应助万嘉俊采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
阳光火车完成签到 ,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582