Wing jig shape optimisation with gradient-assisted metamodel building in a trust-region optimisation framework

元建模 水准点(测量) 稳健性(进化) 数学优化 计算机科学 工程设计过程 算法 数学 工程类 结构工程 机械工程 地理 程序设计语言 化学 基因 生物化学 大地测量学
作者
Yu Zhang,Dongsheng Jia,Elliot K. Bontoft,Vassili Toropov
出处
期刊:Structural and Multidisciplinary Optimization [Springer Science+Business Media]
卷期号:65 (12) 被引量:5
标识
DOI:10.1007/s00158-022-03453-0
摘要

Abstract Significant computational resources are required to obtain an optimised wing jig shape by solving a high-fidelity large-scale aero-structural design optimisation problem. Gradient-based methods are efficient; however, some of the features of real-life engineering problems including numerical noise that pollutes the function values and occurrences of failed evaluations in the optimisation may limit their performance. To address these issues, this paper presents the latest developments in the multipoint approximation method (MAM) based on a gradient-assisted metamodel assembly technique within a trust-region optimisation framework. The proposed method is tested by a benchmark case first, and then, an aircraft wing jig shape optimisation problem is offered to demonstrate its performance. The gradient-based optimisation is used as a benchmark case, and the metamodel-based optimisation utilises the latest developments in MAM to solve the same problem. The results show that the proposed method can achieve the same design goal as the gradient-based method but with enhanced robustness and efficient performance. In the wing jig shape optimisation, the difference in the design objective, the global equivalent drag coefficient, between the two aforementioned optimisation approaches is 0.20 counts, whose relative difference is approximately 0.10%. Three approximate sub-optimisations have been conducted in every iteration of the metamodel-based optimisation to reduce the possibility of local optimality, while the overall elapsed time of the metamodel-based optimisation is approximately 1.98 times that of one gradient-based optimisation, which confirms the competitiveness of the proposed method bearing in mind the added safeguards for numerical noise, failed evaluations and possible local optimality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
SCH_zhu完成签到,获得积分10
1秒前
1秒前
sunshine完成签到,获得积分10
1秒前
viclcn完成签到,获得积分10
1秒前
ROMANTIC完成签到 ,获得积分10
1秒前
魔魔胡胡胡萝卜完成签到,获得积分10
1秒前
今后应助wyn采纳,获得10
2秒前
大力哈密瓜完成签到,获得积分10
2秒前
星星之火可以燎原完成签到,获得积分10
2秒前
mama完成签到,获得积分10
2秒前
赵鹏完成签到,获得积分10
3秒前
静静在学呢完成签到,获得积分10
3秒前
PeizeWu发布了新的文献求助10
3秒前
007完成签到,获得积分10
3秒前
阔落发布了新的文献求助10
3秒前
好好学习完成签到,获得积分0
3秒前
longfang发布了新的文献求助10
4秒前
4秒前
诉衷情发布了新的文献求助10
4秒前
美女完成签到,获得积分10
4秒前
紫苏桃子姜完成签到,获得积分10
4秒前
syf完成签到 ,获得积分10
4秒前
谁在深海的大菠萝里完成签到,获得积分10
4秒前
111完成签到 ,获得积分10
4秒前
Shi完成签到,获得积分10
4秒前
guoyanna完成签到,获得积分10
4秒前
wu61发布了新的文献求助20
5秒前
天天快乐应助snow采纳,获得10
5秒前
lilia完成签到,获得积分10
5秒前
Kyrie完成签到,获得积分10
6秒前
obaica完成签到,获得积分10
6秒前
6秒前
fanlin完成签到,获得积分0
6秒前
赘婿应助cxr上劲了采纳,获得30
6秒前
李永宽完成签到,获得积分10
7秒前
7秒前
orixero应助马晓玲采纳,获得10
7秒前
懒123完成签到,获得积分10
7秒前
黄柯钦完成签到,获得积分20
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5189220
求助须知:如何正确求助?哪些是违规求助? 4373376
关于积分的说明 13616425
捐赠科研通 4226879
什么是DOI,文献DOI怎么找? 2318410
邀请新用户注册赠送积分活动 1317081
关于科研通互助平台的介绍 1266938