亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predictive models for concrete properties using machine learning and deep learning approaches: A review

机器学习 人工智能 人气 计算机科学 深度学习 机器人学 强化学习 工业工程 工程类 机器人 心理学 社会心理学
作者
Mohammad Mohtasham Moein,Ashkan Saradar,Komeil Rahmati,Seyed Hosein Ghasemzadeh Mousavinejad,James Bristow,Vartenie Aramali,Moses Karakouzian
出处
期刊:Journal of building engineering [Elsevier]
卷期号:63: 105444-105444 被引量:297
标识
DOI:10.1016/j.jobe.2022.105444
摘要

Concrete is one of the most widely used materials in various civil engineering applications. Its global production rate is increasing to meet demand. Mechanical properties of concrete are among important parameters in designing and evaluating its performance. Over the past few decades, machine learning has been used to model real-world problems. Machine learning, as a branch of artificial intelligence, is gaining popularity in many scientific fields such as robotics, statistics, bioinformatics, computer science, and construction materials. Machine learning has many advantages over statistical and experimental models, such as optimal accuracy, high-performance speed, responsiveness in complex environments, and economic cost-effectiveness. Recently, more researchers are looking into deep learning, which is a group of machine learning algorithms, as a powerful method in matters of diagnosis and classification. Hence, this paper provides a review of successful ML and DL model applications to predict concrete mechanical properties. Several modeling algorithms were reviewed highlighting their applications, performance, current knowledge gaps, and suggestions for future research. This paper will assist construction material engineers and researchers in selecting suitable and accurate techniques that fit their applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贪玩老姆完成签到 ,获得积分10
2秒前
tj完成签到 ,获得积分10
7秒前
10秒前
阳佟水蓉完成签到,获得积分10
14秒前
16秒前
所所应助zhvjdb采纳,获得10
17秒前
18秒前
34秒前
38秒前
维颖发布了新的文献求助10
39秒前
科研通AI2S应助魏欣娜采纳,获得10
41秒前
44秒前
46秒前
浮浮世世发布了新的文献求助10
49秒前
50秒前
浮游应助科研通管家采纳,获得10
53秒前
CipherSage应助科研通管家采纳,获得10
53秒前
嘻嘻哈哈应助科研通管家采纳,获得10
53秒前
嘻嘻哈哈应助科研通管家采纳,获得10
53秒前
爆米花应助科研通管家采纳,获得10
53秒前
Cast_Lappland发布了新的文献求助10
54秒前
1分钟前
Cast_Lappland完成签到,获得积分10
1分钟前
早川完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助魏欣娜采纳,获得10
1分钟前
可爱的函函应助早川采纳,获得10
1分钟前
馍夹菜完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Vivian发布了新的文献求助30
1分钟前
Fox完成签到,获得积分10
2分钟前
科研通AI2S应助魏欣娜采纳,获得10
2分钟前
2分钟前
维颖完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
zhvjdb发布了新的文献求助10
2分钟前
Raju发布了新的文献求助100
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482307
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388883
捐赠科研通 4512205
什么是DOI,文献DOI怎么找? 2472753
邀请新用户注册赠送积分活动 1459020
关于科研通互助平台的介绍 1432430