亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Slope stability machine learning predictions on spatially variable random fields with and without factor of safety calculations

理论(学习稳定性) 安全系数 变量(数学) 安全系数 因子(编程语言) 计算机科学 人工智能 机器学习 数学 工程类 岩土工程 数学分析 程序设计语言
作者
Mohammad Aminpour,Reza Alaie,Sajjad Khosravi,Navid Kardani,Sara Moridpour,Majidreza Nazem
出处
期刊:Computers and Geotechnics [Elsevier BV]
卷期号:153: 105094-105094 被引量:31
标识
DOI:10.1016/j.compgeo.2022.105094
摘要

Random field Monte Carlo (MC) reliability analysis is a robust stochastic method to determine the probability of failure. This method, however, requires a large number of numerical simulations demanding high computational costs. This paper explores the efficiency of machine learning (ML) models and Artificial Neural Networks used as surrogate models trained on a limited number of random field slope stability simulations in predicting the results of large datasets. The paper explores the efficiency of the predictions on the probability of failure using databases with and without factor of safety (FOS) computations. An extensive range of soil heterogeneity and anisotropy is examined on unstratified and layered slopes. On datasets requiring only the examination of failure or non-failure class of slopes (without FOSs), the performance of ML classification of the random field slope stability results generally reduces with higher anisotropy and heterogeneity of the soil. However, using the probability summation method proposed here, ML prediction of the probability of failure is shown to be highly accurate for the whole range of soil heterogeneity and anisotropy. The errors in the predicted probability of failure using 5% of MC data is only 0.46% in average for the prediction of the remaining unseen 95% of data. Offering such accuracies, the approach accelerates the computations for about 100 folds. The models also proved similarly efficient in predicting FOSs for stratified random field anisotropic heterogenous slopes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
27秒前
51秒前
Sym发布了新的文献求助10
52秒前
立行完成签到 ,获得积分10
1分钟前
安静书雁完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
古铜完成签到 ,获得积分10
3分钟前
契咯完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
苏楠完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
老迟到的友桃完成签到 ,获得积分10
6分钟前
ceeray23发布了新的文献求助20
6分钟前
tingalan应助科研通管家采纳,获得10
6分钟前
bookgg完成签到 ,获得积分10
6分钟前
6分钟前
ZgnomeshghT发布了新的文献求助10
6分钟前
善学以致用应助ZgnomeshghT采纳,获得10
6分钟前
6分钟前
6分钟前
7分钟前
7分钟前
7分钟前
7分钟前
孤独剑完成签到 ,获得积分10
7分钟前
科研通AI2S应助ceeray23采纳,获得20
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4889480
求助须知:如何正确求助?哪些是违规求助? 4173477
关于积分的说明 12952093
捐赠科研通 3934926
什么是DOI,文献DOI怎么找? 2159102
邀请新用户注册赠送积分活动 1177454
关于科研通互助平台的介绍 1082281