Individualized morphometric similarity predicts body mass index and food approach behavior in school-age children

连接体 概化理论 体质指数 心理学 相似性(几何) 默认模式网络 发展心理学 神经科学 计算机科学 人工智能 医学 认知 功能连接 内科学 图像(数学)
作者
Yulin Wang,Debo Dong,Ximei Chen,Xiao Gao,Yong Liu,Mingzhao Xiao,Cheng Guo,Hong Chen
出处
期刊:Cerebral Cortex [Oxford University Press]
卷期号:33 (8): 4794-4805 被引量:10
标识
DOI:10.1093/cercor/bhac380
摘要

Abstract Childhood obesity is associated with alterations in brain structure. Previous studies generally used a single structural index to characterize the relationship between body mass index(BMI) and brain structure, which could not describe the alterations of structural covariance between brain regions. To cover this research gap, this study utilized two independent datasets with brain structure profiles and BMI of 155 school-aged children. Connectome-based predictive modeling(CPM) was used to explore whether children’s BMI is reliably predictable by the novel individualized morphometric similarity network(MSN). We revealed the MSN can predict the BMI in school-age children with good generalizability to unseen dataset. Moreover, these revealed significant brain structure covariant networks can further predict children’s food approach behavior. The positive predictive networks mainly incorporated connections between the frontoparietal network(FPN) and the visual network(VN), between the FPN and the limbic network(LN), between the default mode network(DMN) and the LN. The negative predictive network primarily incorporated connections between the FPN and DMN. These results suggested that the incomplete integration of the high-order brain networks and the decreased dedifferentiation of the high-order networks to the primary reward networks can be considered as a core structural basis of the imbalance between inhibitory control and reward processing in childhood obesity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高大的老头完成签到,获得积分10
刚刚
刚刚
1秒前
蓝色斑马发布了新的文献求助10
1秒前
如约而至完成签到,获得积分10
2秒前
flh完成签到,获得积分10
2秒前
2秒前
2秒前
dslhxwlkm发布了新的文献求助10
3秒前
qiu发布了新的文献求助20
3秒前
3秒前
like发布了新的文献求助10
3秒前
4秒前
日富一日发布了新的文献求助10
4秒前
随便完成签到,获得积分10
4秒前
114514完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助30
6秒前
宇月幸成发布了新的文献求助10
6秒前
7秒前
7秒前
惔惔惔发布了新的文献求助10
7秒前
马子妍发布了新的文献求助10
8秒前
叮咚完成签到,获得积分10
8秒前
Owen应助汝桢采纳,获得10
8秒前
8秒前
9秒前
邱扬智发布了新的文献求助10
9秒前
冰火油条虾完成签到 ,获得积分10
9秒前
CodeCraft应助文献来来来采纳,获得10
9秒前
wang发布了新的文献求助10
10秒前
10秒前
kaworul发布了新的文献求助10
10秒前
jin发布了新的文献求助10
10秒前
共享精神应助hiliar采纳,获得10
11秒前
会飞的鱼完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
Dafuer完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894