清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Individualized morphometric similarity predicts body mass index and food approach behavior in school-age children

连接体 概化理论 体质指数 心理学 相似性(几何) 默认模式网络 发展心理学 神经科学 计算机科学 人工智能 医学 认知 功能连接 内科学 图像(数学)
作者
Yulin Wang,Debo Dong,Ximei Chen,Xiao Gao,Yong Liu,Mingzhao Xiao,Cheng Guo,Hong Chen
出处
期刊:Cerebral Cortex [Oxford University Press]
卷期号:33 (8): 4794-4805 被引量:10
标识
DOI:10.1093/cercor/bhac380
摘要

Abstract Childhood obesity is associated with alterations in brain structure. Previous studies generally used a single structural index to characterize the relationship between body mass index(BMI) and brain structure, which could not describe the alterations of structural covariance between brain regions. To cover this research gap, this study utilized two independent datasets with brain structure profiles and BMI of 155 school-aged children. Connectome-based predictive modeling(CPM) was used to explore whether children’s BMI is reliably predictable by the novel individualized morphometric similarity network(MSN). We revealed the MSN can predict the BMI in school-age children with good generalizability to unseen dataset. Moreover, these revealed significant brain structure covariant networks can further predict children’s food approach behavior. The positive predictive networks mainly incorporated connections between the frontoparietal network(FPN) and the visual network(VN), between the FPN and the limbic network(LN), between the default mode network(DMN) and the LN. The negative predictive network primarily incorporated connections between the FPN and DMN. These results suggested that the incomplete integration of the high-order brain networks and the decreased dedifferentiation of the high-order networks to the primary reward networks can be considered as a core structural basis of the imbalance between inhibitory control and reward processing in childhood obesity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幸福大白发布了新的文献求助10
3秒前
MchemG应助科研通管家采纳,获得10
6秒前
null应助科研通管家采纳,获得10
6秒前
null应助科研通管家采纳,获得10
6秒前
null应助科研通管家采纳,获得10
6秒前
MchemG应助科研通管家采纳,获得10
6秒前
null应助科研通管家采纳,获得10
6秒前
Singularity完成签到,获得积分0
27秒前
幸福大白发布了新的文献求助10
53秒前
胡可完成签到 ,获得积分10
55秒前
WangVera完成签到,获得积分10
1分钟前
PeterLin完成签到,获得积分10
1分钟前
Vivian完成签到,获得积分10
1分钟前
大模型应助ping采纳,获得10
1分钟前
wssamuel完成签到 ,获得积分10
1分钟前
1分钟前
幸福大白发布了新的文献求助10
1分钟前
XxxxxxENT发布了新的文献求助10
1分钟前
润润润完成签到 ,获得积分10
2分钟前
共享精神应助勤恳傲旋采纳,获得10
2分钟前
null应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
2分钟前
勤恳傲旋发布了新的文献求助10
2分钟前
2分钟前
3分钟前
斯文败类应助勤恳傲旋采纳,获得10
3分钟前
3分钟前
义气的书雁完成签到,获得积分10
4分钟前
4分钟前
ping发布了新的文献求助10
4分钟前
null应助科研通管家采纳,获得10
4分钟前
勤恳傲旋发布了新的文献求助10
4分钟前
hzh完成签到 ,获得积分10
4分钟前
4分钟前
fabius0351完成签到 ,获得积分10
4分钟前
ping完成签到,获得积分10
4分钟前
Spring完成签到,获得积分10
4分钟前
AmyHu完成签到,获得积分10
5分钟前
MGraceLi_sci完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4569504
求助须知:如何正确求助?哪些是违规求助? 3991585
关于积分的说明 12355974
捐赠科研通 3663939
什么是DOI,文献DOI怎么找? 2019154
邀请新用户注册赠送积分活动 1053631
科研通“疑难数据库(出版商)”最低求助积分说明 941159