Individualized morphometric similarity predicts body mass index and food approach behavior in school-age children

连接体 概化理论 体质指数 心理学 相似性(几何) 默认模式网络 发展心理学 神经科学 计算机科学 人工智能 医学 认知 功能连接 内科学 图像(数学)
作者
Yulin Wang,Debo Dong,Ximei Chen,Xiao Gao,Yong Liu,Mingzhao Xiao,Cheng Guo,Hong Chen
出处
期刊:Cerebral Cortex [Oxford University Press]
卷期号:33 (8): 4794-4805 被引量:10
标识
DOI:10.1093/cercor/bhac380
摘要

Abstract Childhood obesity is associated with alterations in brain structure. Previous studies generally used a single structural index to characterize the relationship between body mass index(BMI) and brain structure, which could not describe the alterations of structural covariance between brain regions. To cover this research gap, this study utilized two independent datasets with brain structure profiles and BMI of 155 school-aged children. Connectome-based predictive modeling(CPM) was used to explore whether children’s BMI is reliably predictable by the novel individualized morphometric similarity network(MSN). We revealed the MSN can predict the BMI in school-age children with good generalizability to unseen dataset. Moreover, these revealed significant brain structure covariant networks can further predict children’s food approach behavior. The positive predictive networks mainly incorporated connections between the frontoparietal network(FPN) and the visual network(VN), between the FPN and the limbic network(LN), between the default mode network(DMN) and the LN. The negative predictive network primarily incorporated connections between the FPN and DMN. These results suggested that the incomplete integration of the high-order brain networks and the decreased dedifferentiation of the high-order networks to the primary reward networks can be considered as a core structural basis of the imbalance between inhibitory control and reward processing in childhood obesity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
kingnb完成签到,获得积分20
刚刚
zhaizhai完成签到,获得积分10
1秒前
xin发布了新的文献求助10
1秒前
1秒前
1秒前
lalala发布了新的文献求助10
1秒前
浮游应助tt采纳,获得10
1秒前
2秒前
无极微光应助HJJHJH采纳,获得20
2秒前
不倦应助HJJHJH采纳,获得10
2秒前
2秒前
orixero应助刀英俊采纳,获得10
2秒前
huang完成签到,获得积分10
2秒前
hoshi发布了新的文献求助10
3秒前
3秒前
3秒前
六宫粉黛发布了新的文献求助10
4秒前
4秒前
丘比特应助xiamu采纳,获得10
4秒前
4秒前
华仔应助Zz采纳,获得10
4秒前
4秒前
榴莲姑娘发布了新的文献求助10
5秒前
SciGPT应助光亮的万天采纳,获得10
5秒前
6秒前
6秒前
可爱的函函应助简单平蓝采纳,获得10
6秒前
6秒前
6秒前
fourfive发布了新的文献求助10
7秒前
饭饭发布了新的文献求助10
7秒前
槑槑发布了新的文献求助10
7秒前
7秒前
8秒前
yznfly应助勤劳沛柔采纳,获得50
8秒前
8秒前
李健的粉丝团团长应助dj采纳,获得10
8秒前
赵亚南发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526018
求助须知:如何正确求助?哪些是违规求助? 4616198
关于积分的说明 14552293
捐赠科研通 4554419
什么是DOI,文献DOI怎么找? 2495890
邀请新用户注册赠送积分活动 1476218
关于科研通互助平台的介绍 1447892