Individualized morphometric similarity predicts body mass index and food approach behavior in school-age children

连接体 概化理论 体质指数 心理学 相似性(几何) 默认模式网络 发展心理学 神经科学 计算机科学 人工智能 医学 认知 功能连接 内科学 图像(数学)
作者
Yulin Wang,Debo Dong,Ximei Chen,Xiao Gao,Yong Liu,Mingzhao Xiao,Cheng Guo,Hong Chen
出处
期刊:Cerebral Cortex [Oxford University Press]
卷期号:33 (8): 4794-4805 被引量:10
标识
DOI:10.1093/cercor/bhac380
摘要

Abstract Childhood obesity is associated with alterations in brain structure. Previous studies generally used a single structural index to characterize the relationship between body mass index(BMI) and brain structure, which could not describe the alterations of structural covariance between brain regions. To cover this research gap, this study utilized two independent datasets with brain structure profiles and BMI of 155 school-aged children. Connectome-based predictive modeling(CPM) was used to explore whether children’s BMI is reliably predictable by the novel individualized morphometric similarity network(MSN). We revealed the MSN can predict the BMI in school-age children with good generalizability to unseen dataset. Moreover, these revealed significant brain structure covariant networks can further predict children’s food approach behavior. The positive predictive networks mainly incorporated connections between the frontoparietal network(FPN) and the visual network(VN), between the FPN and the limbic network(LN), between the default mode network(DMN) and the LN. The negative predictive network primarily incorporated connections between the FPN and DMN. These results suggested that the incomplete integration of the high-order brain networks and the decreased dedifferentiation of the high-order networks to the primary reward networks can be considered as a core structural basis of the imbalance between inhibitory control and reward processing in childhood obesity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
www完成签到,获得积分10
刚刚
1秒前
懵懂的谷蓝完成签到,获得积分10
1秒前
1秒前
ding应助xhuang采纳,获得30
2秒前
JamesPei应助Alice采纳,获得10
2秒前
整齐凌波关注了科研通微信公众号
2秒前
aoi发布了新的文献求助100
3秒前
酒洲发布了新的文献求助10
3秒前
龙121关注了科研通微信公众号
3秒前
Henry完成签到,获得积分10
4秒前
爱你的心完成签到 ,获得积分10
5秒前
小白熊发布了新的文献求助10
5秒前
烟花应助柚屿采纳,获得10
6秒前
6秒前
坦率铅笔发布了新的文献求助10
7秒前
Maestro_S应助洁净亦巧采纳,获得10
7秒前
zxk发布了新的文献求助10
7秒前
wwwwrrrrr完成签到,获得积分10
7秒前
lllll发布了新的文献求助10
7秒前
8秒前
默问应助缥缈一刀采纳,获得10
8秒前
8秒前
搞科研的静静完成签到,获得积分10
8秒前
传奇3应助健康的绮晴采纳,获得30
8秒前
9秒前
科研通AI6.1应助aaaaaawwwww采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
12秒前
xiaoyaoxiao99完成签到,获得积分10
12秒前
布丁仔完成签到,获得积分10
13秒前
14秒前
14秒前
laoji发布了新的文献求助10
14秒前
贪玩鸵鸟发布了新的文献求助10
14秒前
ding应助世界和平采纳,获得10
15秒前
鹿多多发布了新的文献求助10
15秒前
16秒前
JamesPei应助调皮的蓝天采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785163
求助须知:如何正确求助?哪些是违规求助? 5686456
关于积分的说明 15466952
捐赠科研通 4914293
什么是DOI,文献DOI怎么找? 2645133
邀请新用户注册赠送积分活动 1592960
关于科研通互助平台的介绍 1547317