Artificial intelligence: A review of current applications in hepatocellular carcinoma imaging

医学 可解释性 人工智能 深度学习 机器学习 概化理论 卷积神经网络 肝细胞癌 医学物理学 放射科 计算机科学 内科学 数学 统计
作者
Anna Pellat,Maxime Barat,Romain Coriat,Philippe Soyer,Anthony Dohan
出处
期刊:Diagnostic and interventional imaging [Elsevier]
卷期号:104 (1): 24-36 被引量:20
标识
DOI:10.1016/j.diii.2022.10.001
摘要

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and currently the third-leading cause of cancer-related death worldwide. Recently, artificial intelligence (AI) has emerged as an important tool to improve clinical management of HCC, including for diagnosis, prognostication and evaluation of treatment response. Different AI approaches, such as machine learning and deep learning, are both based on the concept of developing prediction algorithms from large amounts of data, or big data. The era of digital medicine has led to a rapidly expanding amount of routinely collected health data which can be leveraged for the development of AI models. Various studies have constructed AI models by using features extracted from ultrasound imaging, computed tomography imaging and magnetic resonance imaging. Most of these models have used convolutional neural networks. These tools have shown promising results for HCC detection, characterization of liver lesions and liver/tumor segmentation. Regarding treatment, studies have outlined a role for AI in evaluation of treatment response and improvement of pre-treatment planning. Several challenges remain to fully integrate AI models in clinical practice. Future research is still needed to robustly evaluate AI algorithms in prospective trials, and improve interpretability, generalizability and transparency. If such challenges can be overcome, AI has the potential to profoundly change the management of patients with HCC. The purpose of this review was to sum up current evidence on AI approaches using imaging for the clinical management of HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rookie完成签到 ,获得积分20
1秒前
小二郎应助蔡从安采纳,获得10
1秒前
科研通AI2S应助蔡从安采纳,获得10
1秒前
今天也要开心Y完成签到,获得积分10
1秒前
十六月亮发布了新的文献求助10
2秒前
2秒前
4秒前
mathmotive完成签到,获得积分10
4秒前
英俊的铭应助立军采纳,获得10
4秒前
4秒前
传奇3应助端庄的白开水采纳,获得10
5秒前
慕青应助星星采纳,获得10
5秒前
crookshanks88完成签到,获得积分10
5秒前
Xx完成签到,获得积分10
6秒前
十六月亮完成签到,获得积分10
7秒前
哈哈呀完成签到 ,获得积分10
7秒前
天天快乐应助研友_LBryAL采纳,获得10
7秒前
Leonardi应助鲤鱼盼望采纳,获得200
8秒前
9秒前
9秒前
kleine完成签到 ,获得积分10
9秒前
10秒前
IAMXC发布了新的文献求助10
11秒前
时泰完成签到,获得积分10
11秒前
云隐发布了新的文献求助10
13秒前
认真沅完成签到,获得积分10
14秒前
smz完成签到 ,获得积分20
16秒前
YYYY完成签到,获得积分10
17秒前
17秒前
18秒前
cong完成签到 ,获得积分10
18秒前
洁净的山河完成签到,获得积分10
19秒前
英姑应助霸气的梦露采纳,获得10
21秒前
蘑菇完成签到,获得积分10
21秒前
21秒前
Wind发布了新的文献求助10
21秒前
纪鹏飞完成签到,获得积分10
22秒前
crookshanks88发布了新的文献求助10
22秒前
星辰大海应助李李李采纳,获得10
23秒前
不配.应助暴躁的信封采纳,获得10
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143695
求助须知:如何正确求助?哪些是违规求助? 2795199
关于积分的说明 7813564
捐赠科研通 2451202
什么是DOI,文献DOI怎么找? 1304353
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601393