The application of health recommender systems based on knowledge graph: a scoping review

推荐系统 计算机科学 医疗保健 图形 精确性和召回率 领域(数学) 召回 数据科学 人工智能 情报检索 心理学 数学 理论计算机科学 经济 经济增长 纯数学 认知心理学
作者
Xu Zhang,Ming Yi,Yan Sun,Shuyu Han,Wenmin Zhang,Zhiwen Wang
标识
DOI:10.1097/nr9.0000000000000014
摘要

Abstract Background: Tailored knowledge graph-based recommender systems (KGRSs) have been demonstrated to be able to provide accurate and effective health recommendations to users, and thus significantly reduce health care costs. They are now strongly recommended to be applied in the health care field. Objective: This scoping review aims to identify the current application of KGRSs, their target users and performance metrics, and the potential limitations of implementing health recommender systems in clinical practice. Methods: A review of the studies published from inception to November 1, 2022 was conducted, using key search terms in 6 scientific databases to identify health recommender systems based on knowledge graph technology. Key information from the included studies was extracted and charted. The scoping review was reported following the PRISMA Extension for Scoping Reviews. Result: We included 16 studies and 5 grants totally about the health recommender systems based on knowledge graph technology. They were used in different health areas: traditional Chinese medicine, health management, disease-related decision support, diet, and nutrition recommendations. Among them, 6 studies were for the general public and 6 were for physicians. A total of 13 (81.25%) studies evaluated the KGRS using performance metrics, such as accuracy, recall, F1 score, and area under the curve. All studies pointed out the limitations of the recommender systems and provided directions for their subsequent optimization and improvement. Conclusion: This review describes the state-of-the-art and potential limitations of KGRS used in the health care field. This novel approach has been proven to be effective in overcoming the drawbacks of traditional algorithms, helping users filter massive amounts of data to find out the personalized information they need. Its great potential in digital health needs to be further explored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jenny完成签到,获得积分10
1秒前
luo完成签到,获得积分10
1秒前
段月漪完成签到 ,获得积分10
3秒前
大头完成签到 ,获得积分10
4秒前
诸葛青发布了新的文献求助20
4秒前
js110发布了新的文献求助10
4秒前
小马完成签到,获得积分10
5秒前
HaonanZhang完成签到,获得积分10
6秒前
今后应助夏夏采纳,获得10
7秒前
js110完成签到,获得积分20
10秒前
小贾完成签到,获得积分10
12秒前
12秒前
12秒前
CodeCraft应助hqq采纳,获得10
13秒前
Clover完成签到 ,获得积分10
15秒前
FashionBoy应助nimonimo采纳,获得10
15秒前
小家伙发布了新的文献求助10
16秒前
三水完成签到,获得积分10
16秒前
17秒前
22秒前
KimJongUn完成签到,获得积分10
23秒前
卖萌的秋田完成签到,获得积分10
25秒前
25秒前
hqq发布了新的文献求助10
28秒前
28秒前
隐形曼青应助杪123采纳,获得10
28秒前
29秒前
30秒前
小周棒棒哒完成签到,获得积分10
31秒前
拉赫马尼洛夫完成签到,获得积分20
31秒前
夏夏发布了新的文献求助10
32秒前
m木宁木蒙发布了新的文献求助10
34秒前
34秒前
nimonimo发布了新的文献求助10
35秒前
35秒前
炙热尔阳完成签到 ,获得积分10
36秒前
36秒前
anliluo发布了新的文献求助10
38秒前
38秒前
杪123发布了新的文献求助10
41秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
What’s the Evidence? An Investigation into Teacher Quality 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3701555
求助须知:如何正确求助?哪些是违规求助? 3251755
关于积分的说明 9876024
捐赠科研通 2963720
什么是DOI,文献DOI怎么找? 1625252
邀请新用户注册赠送积分活动 769908
科研通“疑难数据库(出版商)”最低求助积分说明 742623