The application of health recommender systems based on knowledge graph: a scoping review

推荐系统 计算机科学 医疗保健 图形 精确性和召回率 领域(数学) 召回 数据科学 人工智能 情报检索 心理学 数学 理论计算机科学 经济 经济增长 纯数学 认知心理学
作者
Xu Zhang,Ming Yi,Yan Sun,Shuyu Han,Wenmin Zhang,Zhiwen Wang
标识
DOI:10.1097/nr9.0000000000000014
摘要

Abstract Background: Tailored knowledge graph-based recommender systems (KGRSs) have been demonstrated to be able to provide accurate and effective health recommendations to users, and thus significantly reduce health care costs. They are now strongly recommended to be applied in the health care field. Objective: This scoping review aims to identify the current application of KGRSs, their target users and performance metrics, and the potential limitations of implementing health recommender systems in clinical practice. Methods: A review of the studies published from inception to November 1, 2022 was conducted, using key search terms in 6 scientific databases to identify health recommender systems based on knowledge graph technology. Key information from the included studies was extracted and charted. The scoping review was reported following the PRISMA Extension for Scoping Reviews. Result: We included 16 studies and 5 grants totally about the health recommender systems based on knowledge graph technology. They were used in different health areas: traditional Chinese medicine, health management, disease-related decision support, diet, and nutrition recommendations. Among them, 6 studies were for the general public and 6 were for physicians. A total of 13 (81.25%) studies evaluated the KGRS using performance metrics, such as accuracy, recall, F1 score, and area under the curve. All studies pointed out the limitations of the recommender systems and provided directions for their subsequent optimization and improvement. Conclusion: This review describes the state-of-the-art and potential limitations of KGRS used in the health care field. This novel approach has been proven to be effective in overcoming the drawbacks of traditional algorithms, helping users filter massive amounts of data to find out the personalized information they need. Its great potential in digital health needs to be further explored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定碧玉完成签到 ,获得积分10
4秒前
huangqian完成签到,获得积分10
5秒前
含蓄的易蓉完成签到,获得积分20
14秒前
时尚的细菌完成签到,获得积分10
14秒前
义气蚂蚁完成签到,获得积分10
14秒前
称心的语梦完成签到,获得积分10
17秒前
月亮上的猫完成签到,获得积分10
18秒前
可夫司机完成签到 ,获得积分10
21秒前
宁万三完成签到 ,获得积分10
22秒前
asdasd完成签到 ,获得积分10
22秒前
22秒前
小白应助含蓄的易蓉采纳,获得30
23秒前
胖子完成签到,获得积分10
25秒前
jyu完成签到,获得积分10
26秒前
27秒前
whyzz完成签到 ,获得积分10
31秒前
Jocd完成签到,获得积分10
31秒前
十六发布了新的文献求助50
32秒前
zzz完成签到,获得积分10
34秒前
小超人到海底捉虫完成签到,获得积分10
35秒前
bb完成签到,获得积分10
35秒前
小刘小刘完成签到 ,获得积分10
35秒前
小背包完成签到 ,获得积分10
37秒前
大白包子李完成签到,获得积分10
39秒前
muzi完成签到,获得积分10
40秒前
zedhumble发布了新的文献求助10
40秒前
未晞完成签到,获得积分10
40秒前
zhang完成签到 ,获得积分10
40秒前
digger2023完成签到 ,获得积分10
41秒前
ES完成签到 ,获得积分10
41秒前
July完成签到,获得积分10
42秒前
十六完成签到,获得积分10
42秒前
44秒前
44秒前
Zhang完成签到,获得积分10
45秒前
Lucas应助土豪的白卉采纳,获得10
45秒前
45秒前
哎嘿应助科研通管家采纳,获得10
46秒前
哎嘿应助科研通管家采纳,获得10
46秒前
Raylihuang应助科研通管家采纳,获得10
46秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162519
求助须知:如何正确求助?哪些是违规求助? 2813358
关于积分的说明 7900144
捐赠科研通 2472938
什么是DOI,文献DOI怎么找? 1316594
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175