Symbolic Discovery of Optimization Algorithms

杠杆(统计) 计算机科学 算法 一般化 单调函数 深层神经网络 简单(哲学) 人工神经网络 人工智能 机器学习 数学 数学分析 哲学 认识论
作者
Xiangning Chen,Liang Chen,Da Huang,Esteban Real,Kaiyuan Wang,Yao Liu,Hieu Pham,Xuanyi Dong,Thang M. Luong,Cho‐Jui Hsieh,Yifeng Lu,Quoc V. Le
出处
期刊:Cornell University - arXiv 被引量:92
标识
DOI:10.48550/arxiv.2302.06675
摘要

We present a method to formulate algorithm discovery as program search, and apply it to discover optimization algorithms for deep neural network training. We leverage efficient search techniques to explore an infinite and sparse program space. To bridge the large generalization gap between proxy and target tasks, we also introduce program selection and simplification strategies. Our method discovers a simple and effective optimization algorithm, $\textbf{Lion}$ ($\textit{Evo$\textbf{L}$ved S$\textbf{i}$gn M$\textbf{o}$me$\textbf{n}$tum}$). It is more memory-efficient than Adam as it only keeps track of the momentum. Different from adaptive optimizers, its update has the same magnitude for each parameter calculated through the sign operation. We compare Lion with widely used optimizers, such as Adam and Adafactor, for training a variety of models on different tasks. On image classification, Lion boosts the accuracy of ViT by up to 2% on ImageNet and saves up to 5x the pre-training compute on JFT. On vision-language contrastive learning, we achieve 88.3% $\textit{zero-shot}$ and 91.1% $\textit{fine-tuning}$ accuracy on ImageNet, surpassing the previous best results by 2% and 0.1%, respectively. On diffusion models, Lion outperforms Adam by achieving a better FID score and reducing the training compute by up to 2.3x. For autoregressive, masked language modeling, and fine-tuning, Lion exhibits a similar or better performance compared to Adam. Our analysis of Lion reveals that its performance gain grows with the training batch size. It also requires a smaller learning rate than Adam due to the larger norm of the update produced by the sign function. Additionally, we examine the limitations of Lion and identify scenarios where its improvements are small or not statistically significant. Lion is also successfully deployed in production systems such as Google search ads CTR model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺心怜寒完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
rrrrrrry发布了新的文献求助10
2秒前
2秒前
yar应助年轻迪奥采纳,获得10
3秒前
木耶关注了科研通微信公众号
4秒前
元谷雪发布了新的文献求助10
5秒前
6秒前
坦率的匪发布了新的文献求助30
6秒前
阔达幻丝发布了新的文献求助30
7秒前
8秒前
9秒前
9秒前
呋喃完成签到,获得积分10
9秒前
9秒前
搜集达人应助kyt采纳,获得10
9秒前
chen发布了新的文献求助10
9秒前
何小珍发布了新的文献求助10
11秒前
九儿完成签到 ,获得积分10
13秒前
13秒前
123321发布了新的文献求助30
14秒前
吉不二完成签到,获得积分10
14秒前
ymmmaomao23完成签到,获得积分10
15秒前
zxp发布了新的文献求助10
15秒前
Liu完成签到,获得积分20
16秒前
泥瓦酱发布了新的文献求助10
16秒前
17秒前
斑鸠完成签到,获得积分10
18秒前
wentong完成签到,获得积分10
19秒前
深情安青应助猪猪hero采纳,获得10
19秒前
小于发布了新的文献求助10
19秒前
23秒前
23秒前
23秒前
嗨翻的冰激凌完成签到 ,获得积分10
23秒前
Liuym完成签到 ,获得积分10
24秒前
木耶发布了新的文献求助10
25秒前
肥猫完成签到,获得积分10
27秒前
28秒前
小蘑菇应助席以亦采纳,获得10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500555
关于积分的说明 11099959
捐赠科研通 3231062
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869908
科研通“疑难数据库(出版商)”最低求助积分说明 801717