Symbolic Discovery of Optimization Algorithms

杠杆(统计) 计算机科学 算法 一般化 单调函数 深层神经网络 简单(哲学) 人工神经网络 人工智能 机器学习 数学 认识论 数学分析 哲学
作者
Xiangning Chen,Liang Chen,Da Huang,Esteban Real,Kaiyuan Wang,Yao Liu,Hieu Pham,Xuanyi Dong,Thang M. Luong,Cho‐Jui Hsieh,Yifeng Lu,Quoc V. Le
出处
期刊:Cornell University - arXiv 被引量:92
标识
DOI:10.48550/arxiv.2302.06675
摘要

We present a method to formulate algorithm discovery as program search, and apply it to discover optimization algorithms for deep neural network training. We leverage efficient search techniques to explore an infinite and sparse program space. To bridge the large generalization gap between proxy and target tasks, we also introduce program selection and simplification strategies. Our method discovers a simple and effective optimization algorithm, $\textbf{Lion}$ ($\textit{Evo$\textbf{L}$ved S$\textbf{i}$gn M$\textbf{o}$me$\textbf{n}$tum}$). It is more memory-efficient than Adam as it only keeps track of the momentum. Different from adaptive optimizers, its update has the same magnitude for each parameter calculated through the sign operation. We compare Lion with widely used optimizers, such as Adam and Adafactor, for training a variety of models on different tasks. On image classification, Lion boosts the accuracy of ViT by up to 2% on ImageNet and saves up to 5x the pre-training compute on JFT. On vision-language contrastive learning, we achieve 88.3% $\textit{zero-shot}$ and 91.1% $\textit{fine-tuning}$ accuracy on ImageNet, surpassing the previous best results by 2% and 0.1%, respectively. On diffusion models, Lion outperforms Adam by achieving a better FID score and reducing the training compute by up to 2.3x. For autoregressive, masked language modeling, and fine-tuning, Lion exhibits a similar or better performance compared to Adam. Our analysis of Lion reveals that its performance gain grows with the training batch size. It also requires a smaller learning rate than Adam due to the larger norm of the update produced by the sign function. Additionally, we examine the limitations of Lion and identify scenarios where its improvements are small or not statistically significant. Lion is also successfully deployed in production systems such as Google search ads CTR model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hello应助zhang采纳,获得10
刚刚
weixiao完成签到,获得积分20
2秒前
传奇3应助Betty采纳,获得10
2秒前
BowieHuang应助子暮采纳,获得10
2秒前
Yang发布了新的文献求助20
3秒前
77完成签到,获得积分10
3秒前
园游会发布了新的文献求助10
3秒前
weixiao发布了新的文献求助10
5秒前
贪玩灵松发布了新的文献求助10
5秒前
维C完成签到 ,获得积分10
5秒前
6秒前
weihongjuan发布了新的文献求助10
6秒前
6秒前
乱泽华完成签到 ,获得积分10
6秒前
恬恬完成签到,获得积分10
8秒前
ECT完成签到,获得积分10
9秒前
慕青应助董卓小蛮腰采纳,获得10
10秒前
11秒前
科研通AI6应助wz采纳,获得10
12秒前
12秒前
香蕉觅云应助Lucien采纳,获得30
12秒前
12秒前
12秒前
13秒前
Xavier完成签到,获得积分20
13秒前
Criminology34应助海子采纳,获得10
13秒前
14秒前
大白菜完成签到,获得积分10
14秒前
再见一日完成签到,获得积分10
14秒前
14秒前
15秒前
DY完成签到,获得积分0
15秒前
15秒前
ting_jiang完成签到,获得积分10
16秒前
philipa完成签到,获得积分10
16秒前
16秒前
何安发布了新的文献求助10
17秒前
Orange应助松尐采纳,获得10
17秒前
ning完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608315
求助须知:如何正确求助?哪些是违规求助? 4692918
关于积分的说明 14876115
捐赠科研通 4717325
什么是DOI,文献DOI怎么找? 2544189
邀请新用户注册赠送积分活动 1509187
关于科研通互助平台的介绍 1472836