Symbolic Discovery of Optimization Algorithms

杠杆(统计) 计算机科学 算法 一般化 单调函数 深层神经网络 简单(哲学) 人工神经网络 人工智能 机器学习 数学 数学分析 哲学 认识论
作者
Xiangning Chen,Liang Chen,Da Huang,Esteban Real,Kaiyuan Wang,Yao Liu,Hieu Pham,Xuanyi Dong,Thang M. Luong,Cho‐Jui Hsieh,Yifeng Lu,Quoc V. Le
出处
期刊:Cornell University - arXiv 被引量:92
标识
DOI:10.48550/arxiv.2302.06675
摘要

We present a method to formulate algorithm discovery as program search, and apply it to discover optimization algorithms for deep neural network training. We leverage efficient search techniques to explore an infinite and sparse program space. To bridge the large generalization gap between proxy and target tasks, we also introduce program selection and simplification strategies. Our method discovers a simple and effective optimization algorithm, $\textbf{Lion}$ ($\textit{Evo$\textbf{L}$ved S$\textbf{i}$gn M$\textbf{o}$me$\textbf{n}$tum}$). It is more memory-efficient than Adam as it only keeps track of the momentum. Different from adaptive optimizers, its update has the same magnitude for each parameter calculated through the sign operation. We compare Lion with widely used optimizers, such as Adam and Adafactor, for training a variety of models on different tasks. On image classification, Lion boosts the accuracy of ViT by up to 2% on ImageNet and saves up to 5x the pre-training compute on JFT. On vision-language contrastive learning, we achieve 88.3% $\textit{zero-shot}$ and 91.1% $\textit{fine-tuning}$ accuracy on ImageNet, surpassing the previous best results by 2% and 0.1%, respectively. On diffusion models, Lion outperforms Adam by achieving a better FID score and reducing the training compute by up to 2.3x. For autoregressive, masked language modeling, and fine-tuning, Lion exhibits a similar or better performance compared to Adam. Our analysis of Lion reveals that its performance gain grows with the training batch size. It also requires a smaller learning rate than Adam due to the larger norm of the update produced by the sign function. Additionally, we examine the limitations of Lion and identify scenarios where its improvements are small or not statistically significant. Lion is also successfully deployed in production systems such as Google search ads CTR model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luoye完成签到 ,获得积分10
刚刚
刚刚
刚刚
专一的妙海完成签到,获得积分10
1秒前
娆疆第一深情完成签到,获得积分10
1秒前
肥鱼完成签到 ,获得积分20
1秒前
邓博完成签到,获得积分10
1秒前
明理乐儿完成签到,获得积分10
1秒前
2秒前
无限的铅笔完成签到,获得积分10
2秒前
nelson发布了新的文献求助10
3秒前
活泼人生完成签到 ,获得积分10
3秒前
怪叔叔发布了新的文献求助10
3秒前
haru完成签到,获得积分10
3秒前
3秒前
4秒前
briliian完成签到,获得积分10
4秒前
4秒前
Scar_SJ发布了新的文献求助10
4秒前
早川完成签到 ,获得积分10
4秒前
shaosx发布了新的文献求助10
4秒前
5秒前
Liuqing发布了新的文献求助10
5秒前
带带带笑川完成签到,获得积分10
5秒前
现代柠檬完成签到,获得积分20
6秒前
山大琦子完成签到,获得积分10
6秒前
烟花应助yu采纳,获得10
6秒前
Owen应助Yu采纳,获得10
6秒前
lcccc完成签到,获得积分20
6秒前
墨羽翔天完成签到,获得积分10
7秒前
高兴星完成签到,获得积分10
7秒前
寻道图强应助数学自动化采纳,获得30
7秒前
MingQue完成签到,获得积分10
7秒前
核动力路灯完成签到,获得积分10
8秒前
9秒前
9秒前
lcccc发布了新的文献求助10
9秒前
刘黎煊发布了新的文献求助10
9秒前
sunflowers完成签到 ,获得积分10
9秒前
9秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167791
求助须知:如何正确求助?哪些是违规求助? 2819164
关于积分的说明 7925456
捐赠科研通 2479083
什么是DOI,文献DOI怎么找? 1320632
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443