Smart farming using artificial intelligence: A review

人工智能 机器学习 计算机科学 深度学习 农业 精准农业 农业工程 作物产量 农学 工程类 生态学 生物
作者
Yaganteeswarudu Akkem,Saroj Kumar Biswas,Aruna Varanasi
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:120: 105899-105899 被引量:159
标识
DOI:10.1016/j.engappai.2023.105899
摘要

Smart farming with artificial intelligence provides an efficient solution to today’s agricultural sustainability challenges. Machine learning, Deep learning, and time series analysis are essential in smart farming. Crop selection, crop yield prediction, soil compatibility classification, water management, and many other processes are involved in agriculture. Machine learning algorithms are used for crop selection and management, Deep learning techniques are used for crop selection and forecasting crop production, and time series analysis is used for demand forecasting of crops, commodity price prediction, and crop yield production forecasting. Crops are chosen using machine learning algorithms and deep learning algorithms based on soil, soil compatibility classification, and other factors. In the agriculture industry, this article offers a thorough review of machine learning and deep learning techniques. Crop data sets can be used to classify soil fertility, crop selection, and many other aspects using machine learning algorithms. Deep learning algorithms can be applied to farming data to do time series analysis and crop selection. Because there is more need for food due to the growing population, crop production forecasting is one of the crucial tasks. Therefore, future crop production must be predicted in order to overcome food insufficiency. In this article, several time series algorithms were reviewed. Suggesting appropriate crop recommendations using machine and deep learning by estimating crop yield by using time series analysis will reduce food insufficiency in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lyw完成签到,获得积分20
1秒前
1秒前
1秒前
1秒前
2秒前
wanci应助Nina采纳,获得10
2秒前
hhh发布了新的文献求助10
2秒前
鑫问发布了新的文献求助10
2秒前
3秒前
3秒前
无敌龙傲天完成签到,获得积分10
3秒前
九命猫完成签到,获得积分10
3秒前
六元嘎嘎发布了新的文献求助30
3秒前
刘根发布了新的文献求助10
3秒前
williamlouis发布了新的文献求助10
3秒前
啊慧发布了新的文献求助10
3秒前
accept完成签到,获得积分10
4秒前
乾乾完成签到,获得积分10
4秒前
4秒前
超级白开水完成签到 ,获得积分10
4秒前
4秒前
4秒前
jzy完成签到,获得积分10
5秒前
詹雪晴发布了新的文献求助10
5秒前
包容的忆枫完成签到,获得积分20
5秒前
lilith发布了新的文献求助10
6秒前
6秒前
bai发布了新的文献求助10
6秒前
arya完成签到,获得积分10
6秒前
6秒前
7秒前
晴空万里完成签到 ,获得积分10
7秒前
小王同学完成签到 ,获得积分10
7秒前
7秒前
Chenly发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
热苏打完成签到,获得积分10
9秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481399
求助须知:如何正确求助?哪些是违规求助? 3071505
关于积分的说明 9122297
捐赠科研通 2763255
什么是DOI,文献DOI怎么找? 1516352
邀请新用户注册赠送积分活动 701541
科研通“疑难数据库(出版商)”最低求助积分说明 700339