Smart farming using artificial intelligence: A review

人工智能 机器学习 计算机科学 深度学习 农业 精准农业 农业工程 作物产量 农学 工程类 生态学 生物
作者
Yaganteeswarudu Akkem,Saroj Kr. Biswas,Aruna Varanasi
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:120: 105899-105899 被引量:209
标识
DOI:10.1016/j.engappai.2023.105899
摘要

Smart farming with artificial intelligence provides an efficient solution to today’s agricultural sustainability challenges. Machine learning, Deep learning, and time series analysis are essential in smart farming. Crop selection, crop yield prediction, soil compatibility classification, water management, and many other processes are involved in agriculture. Machine learning algorithms are used for crop selection and management, Deep learning techniques are used for crop selection and forecasting crop production, and time series analysis is used for demand forecasting of crops, commodity price prediction, and crop yield production forecasting. Crops are chosen using machine learning algorithms and deep learning algorithms based on soil, soil compatibility classification, and other factors. In the agriculture industry, this article offers a thorough review of machine learning and deep learning techniques. Crop data sets can be used to classify soil fertility, crop selection, and many other aspects using machine learning algorithms. Deep learning algorithms can be applied to farming data to do time series analysis and crop selection. Because there is more need for food due to the growing population, crop production forecasting is one of the crucial tasks. Therefore, future crop production must be predicted in order to overcome food insufficiency. In this article, several time series algorithms were reviewed. Suggesting appropriate crop recommendations using machine and deep learning by estimating crop yield by using time series analysis will reduce food insufficiency in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我要留学应助粥游天下采纳,获得20
1秒前
w123完成签到,获得积分10
2秒前
气敏侠完成签到,获得积分10
2秒前
久旱逢甘霖完成签到 ,获得积分10
2秒前
彭于晏应助xiaoran采纳,获得10
3秒前
adq完成签到,获得积分10
3秒前
小小K发布了新的文献求助10
3秒前
Ben发布了新的文献求助10
3秒前
Dream_fai完成签到,获得积分10
3秒前
果果发布了新的文献求助10
3秒前
英俊的铭应助淡定采纳,获得30
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
浮游应助细心小鸭子采纳,获得10
4秒前
飞快的从丹完成签到,获得积分10
4秒前
5秒前
科研通AI2S应助Ztx采纳,获得10
5秒前
小林野发布了新的文献求助10
6秒前
怕黑的凌柏完成签到,获得积分10
6秒前
虚影发布了新的文献求助10
6秒前
6秒前
7秒前
CROWN完成签到,获得积分10
7秒前
7秒前
田様应助piers采纳,获得10
7秒前
7秒前
隐形曼青应助我爱科研采纳,获得30
7秒前
bbb完成签到,获得积分10
8秒前
lcjynwe完成签到,获得积分10
8秒前
8秒前
小二郎应助愉快的楷瑞采纳,获得10
9秒前
科研通AI6应助小绵羊采纳,获得10
9秒前
9秒前
9秒前
Ava应助868采纳,获得10
9秒前
一叶舟完成签到 ,获得积分10
10秒前
xiaozhou完成签到,获得积分10
10秒前
10秒前
受伤的依霜完成签到,获得积分20
10秒前
小王同学完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426