Smart farming using artificial intelligence: A review

人工智能 机器学习 计算机科学 深度学习 农业 精准农业 农业工程 作物产量 农学 工程类 生态学 生物
作者
Yaganteeswarudu Akkem,Saroj Kr. Biswas,Aruna Varanasi
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:120: 105899-105899 被引量:258
标识
DOI:10.1016/j.engappai.2023.105899
摘要

Smart farming with artificial intelligence provides an efficient solution to today’s agricultural sustainability challenges. Machine learning, Deep learning, and time series analysis are essential in smart farming. Crop selection, crop yield prediction, soil compatibility classification, water management, and many other processes are involved in agriculture. Machine learning algorithms are used for crop selection and management, Deep learning techniques are used for crop selection and forecasting crop production, and time series analysis is used for demand forecasting of crops, commodity price prediction, and crop yield production forecasting. Crops are chosen using machine learning algorithms and deep learning algorithms based on soil, soil compatibility classification, and other factors. In the agriculture industry, this article offers a thorough review of machine learning and deep learning techniques. Crop data sets can be used to classify soil fertility, crop selection, and many other aspects using machine learning algorithms. Deep learning algorithms can be applied to farming data to do time series analysis and crop selection. Because there is more need for food due to the growing population, crop production forecasting is one of the crucial tasks. Therefore, future crop production must be predicted in order to overcome food insufficiency. In this article, several time series algorithms were reviewed. Suggesting appropriate crop recommendations using machine and deep learning by estimating crop yield by using time series analysis will reduce food insufficiency in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
刚刚
SCI完成签到,获得积分10
刚刚
怕黑书翠完成签到,获得积分20
1秒前
李爱国应助一一采纳,获得10
2秒前
3秒前
ksiswl发布了新的文献求助10
3秒前
哩哩发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
周敏杰完成签到,获得积分10
4秒前
4秒前
乐乐应助liaoyoujiao采纳,获得10
5秒前
王杰完成签到,获得积分10
5秒前
搜集达人应助哭泣的犀牛采纳,获得10
6秒前
wanci应助hhhhhhhh采纳,获得10
6秒前
李里哩发布了新的文献求助10
9秒前
火神杯完成签到,获得积分10
9秒前
大模型应助水母采纳,获得10
9秒前
FashionBoy应助江湖一郎中采纳,获得10
10秒前
传奇3应助夏侯幻梦采纳,获得10
11秒前
星辰大海应助哩哩采纳,获得10
11秒前
11秒前
12秒前
王喆完成签到,获得积分20
12秒前
Hello应助李里哩采纳,获得10
13秒前
Lynth_雪鸮发布了新的文献求助150
13秒前
13秒前
14秒前
14秒前
14秒前
ZZY发布了新的文献求助10
15秒前
liaoyoujiao发布了新的文献求助10
17秒前
17秒前
17秒前
六六发布了新的文献求助10
19秒前
王喆发布了新的文献求助10
19秒前
yyyyyyy发布了新的文献求助10
19秒前
LZNUDT发布了新的文献求助10
21秒前
hhhhhhhh发布了新的文献求助10
22秒前
彭于晏应助和谐雪曼采纳,获得10
22秒前
彭彭完成签到,获得积分10
22秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620797
求助须知:如何正确求助?哪些是违规求助? 4705375
关于积分的说明 14931806
捐赠科研通 4763300
什么是DOI,文献DOI怎么找? 2551231
邀请新用户注册赠送积分活动 1513783
关于科研通互助平台的介绍 1474672