亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Smart farming using artificial intelligence: A review

人工智能 机器学习 计算机科学 深度学习 农业 精准农业 农业工程 作物产量 农学 工程类 生态学 生物
作者
Yaganteeswarudu Akkem,Saroj Kr. Biswas,Aruna Varanasi
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:120: 105899-105899 被引量:258
标识
DOI:10.1016/j.engappai.2023.105899
摘要

Smart farming with artificial intelligence provides an efficient solution to today’s agricultural sustainability challenges. Machine learning, Deep learning, and time series analysis are essential in smart farming. Crop selection, crop yield prediction, soil compatibility classification, water management, and many other processes are involved in agriculture. Machine learning algorithms are used for crop selection and management, Deep learning techniques are used for crop selection and forecasting crop production, and time series analysis is used for demand forecasting of crops, commodity price prediction, and crop yield production forecasting. Crops are chosen using machine learning algorithms and deep learning algorithms based on soil, soil compatibility classification, and other factors. In the agriculture industry, this article offers a thorough review of machine learning and deep learning techniques. Crop data sets can be used to classify soil fertility, crop selection, and many other aspects using machine learning algorithms. Deep learning algorithms can be applied to farming data to do time series analysis and crop selection. Because there is more need for food due to the growing population, crop production forecasting is one of the crucial tasks. Therefore, future crop production must be predicted in order to overcome food insufficiency. In this article, several time series algorithms were reviewed. Suggesting appropriate crop recommendations using machine and deep learning by estimating crop yield by using time series analysis will reduce food insufficiency in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
17秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
量子星尘发布了新的文献求助10
49秒前
1分钟前
1分钟前
gexzygg发布了新的文献求助10
1分钟前
gszy1975完成签到,获得积分10
1分钟前
1分钟前
FashionBoy应助liwen采纳,获得10
1分钟前
Cx完成签到,获得积分10
2分钟前
2分钟前
2分钟前
liwen发布了新的文献求助10
2分钟前
George发布了新的文献求助10
2分钟前
2分钟前
2分钟前
George完成签到,获得积分10
2分钟前
吴端完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
情怀应助玛卡巴卡采纳,获得10
3分钟前
喻初原完成签到 ,获得积分10
3分钟前
阳光的丹雪完成签到,获得积分10
3分钟前
4分钟前
爆米花应助斯提亚拉采纳,获得10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
斯提亚拉发布了新的文献求助10
4分钟前
天天快乐应助Tree_QD采纳,获得10
5分钟前
斯提亚拉完成签到,获得积分10
5分钟前
5分钟前
吴开珍完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554932
求助须知:如何正确求助?哪些是违规求助? 4639538
关于积分的说明 14656291
捐赠科研通 4581453
什么是DOI,文献DOI怎么找? 2512779
邀请新用户注册赠送积分活动 1487518
关于科研通互助平台的介绍 1458482