Smart farming using artificial intelligence: A review

人工智能 机器学习 计算机科学 深度学习 农业 精准农业 农业工程 作物产量 农学 工程类 生态学 生物
作者
Yaganteeswarudu Akkem,Saroj Kr. Biswas,Aruna Varanasi
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:120: 105899-105899 被引量:258
标识
DOI:10.1016/j.engappai.2023.105899
摘要

Smart farming with artificial intelligence provides an efficient solution to today’s agricultural sustainability challenges. Machine learning, Deep learning, and time series analysis are essential in smart farming. Crop selection, crop yield prediction, soil compatibility classification, water management, and many other processes are involved in agriculture. Machine learning algorithms are used for crop selection and management, Deep learning techniques are used for crop selection and forecasting crop production, and time series analysis is used for demand forecasting of crops, commodity price prediction, and crop yield production forecasting. Crops are chosen using machine learning algorithms and deep learning algorithms based on soil, soil compatibility classification, and other factors. In the agriculture industry, this article offers a thorough review of machine learning and deep learning techniques. Crop data sets can be used to classify soil fertility, crop selection, and many other aspects using machine learning algorithms. Deep learning algorithms can be applied to farming data to do time series analysis and crop selection. Because there is more need for food due to the growing population, crop production forecasting is one of the crucial tasks. Therefore, future crop production must be predicted in order to overcome food insufficiency. In this article, several time series algorithms were reviewed. Suggesting appropriate crop recommendations using machine and deep learning by estimating crop yield by using time series analysis will reduce food insufficiency in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我是老大应助樱sky采纳,获得10
刚刚
yhy完成签到,获得积分10
刚刚
1秒前
超帅凡阳完成签到,获得积分10
1秒前
魏欣雨完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
tf完成签到,获得积分10
2秒前
英俊的铭应助lhh采纳,获得10
2秒前
婷_1988发布了新的文献求助10
2秒前
rrrrrrun发布了新的文献求助10
3秒前
XLYIDNNQJB完成签到 ,获得积分10
3秒前
jiajia发布了新的文献求助30
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
正直尔曼完成签到,获得积分10
4秒前
yan发布了新的文献求助10
5秒前
张远最帅完成签到,获得积分10
5秒前
夜雨听笑完成签到,获得积分10
5秒前
干净的冷安应助蝴蝶采纳,获得10
5秒前
夹心发布了新的文献求助10
6秒前
大帅比发布了新的文献求助10
6秒前
6秒前
6秒前
着急的猴完成签到 ,获得积分10
6秒前
legend完成签到,获得积分0
6秒前
木昆完成签到 ,获得积分10
6秒前
852应助要减肥冰菱采纳,获得10
6秒前
Lillianzhu1完成签到,获得积分10
6秒前
holly发布了新的文献求助10
7秒前
屈洪娇发布了新的文献求助10
7秒前
joeqin完成签到,获得积分10
7秒前
东东完成签到,获得积分10
7秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444