Smart farming using artificial intelligence: A review

人工智能 机器学习 计算机科学 深度学习 农业 精准农业 农业工程 作物产量 农学 工程类 生态学 生物
作者
Yaganteeswarudu Akkem,Saroj Kr. Biswas,Aruna Varanasi
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:120: 105899-105899 被引量:258
标识
DOI:10.1016/j.engappai.2023.105899
摘要

Smart farming with artificial intelligence provides an efficient solution to today’s agricultural sustainability challenges. Machine learning, Deep learning, and time series analysis are essential in smart farming. Crop selection, crop yield prediction, soil compatibility classification, water management, and many other processes are involved in agriculture. Machine learning algorithms are used for crop selection and management, Deep learning techniques are used for crop selection and forecasting crop production, and time series analysis is used for demand forecasting of crops, commodity price prediction, and crop yield production forecasting. Crops are chosen using machine learning algorithms and deep learning algorithms based on soil, soil compatibility classification, and other factors. In the agriculture industry, this article offers a thorough review of machine learning and deep learning techniques. Crop data sets can be used to classify soil fertility, crop selection, and many other aspects using machine learning algorithms. Deep learning algorithms can be applied to farming data to do time series analysis and crop selection. Because there is more need for food due to the growing population, crop production forecasting is one of the crucial tasks. Therefore, future crop production must be predicted in order to overcome food insufficiency. In this article, several time series algorithms were reviewed. Suggesting appropriate crop recommendations using machine and deep learning by estimating crop yield by using time series analysis will reduce food insufficiency in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助岚风采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
嘟嘟嘟完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
领导范儿应助木木采纳,获得10
4秒前
林间完成签到,获得积分10
4秒前
Gjjjjjjj完成签到,获得积分20
5秒前
5秒前
搜集达人应助ZZZ采纳,获得10
5秒前
科研通AI6.1应助Royalll采纳,获得10
5秒前
5秒前
5秒前
伶俐的冬易完成签到,获得积分10
6秒前
蓝天应助时尚冬亦采纳,获得10
6秒前
Ripples完成签到,获得积分10
7秒前
7秒前
阿紫发布了新的文献求助10
7秒前
汉堡包应助siina采纳,获得10
7秒前
777发布了新的文献求助10
7秒前
sinlar发布了新的文献求助10
8秒前
华仔应助朴实的南露采纳,获得10
8秒前
wuww完成签到,获得积分20
8秒前
8秒前
骑帅骑不快完成签到,获得积分10
8秒前
9秒前
summing发布了新的文献求助10
9秒前
9秒前
香蕉梨愁完成签到,获得积分10
9秒前
10秒前
自觉思萱发布了新的文献求助10
10秒前
Isaiah发布了新的文献求助10
10秒前
10秒前
Vegetable_Dog发布了新的文献求助10
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106