Convolutional Neural Networks Accurately Identify Ungradable Images in a Diabetic Retinopathy Telemedicine Screening Program

远程医疗 医学 卷积神经网络 糖尿病性视网膜病变 接收机工作特性 人工智能 糖尿病 金标准(测试) 视网膜病变 验光服务 放射科 内科学 计算机科学 医疗保健 经济 内分泌学 经济增长
作者
John M. Bryan,Paul J. Bryar,Rukhsana G. Mirza
出处
期刊:Telemedicine Journal and E-health [Mary Ann Liebert]
卷期号:29 (9): 1349-1355 被引量:2
标识
DOI:10.1089/tmj.2022.0357
摘要

Purpose:Diabetic retinopathy (DR) is a microvascular complication of diabetes mellitus (DM). Standard of care for patients with DM is an annual eye examination or retinal imaging to assess for DR, the latter of which may be completed through telemedicine approaches. One significant issue is poor-quality images that prevent adequate screening and are thus ungradable. We used artificial intelligence to enable point-of-care (at time of imaging) identification of ungradable images in a DR screening program.Methods:Nonmydriatic retinal images were gathered from patients with DM imaged during a primary care or endocrinology visit from September 1, 2017, to June 1, 2021. The Topcon TRC-NW400 retinal camera (Topcon Corp., Tokyo, Japan) was used. Images were interpreted by 5 ophthalmologists for gradeability, presence and stage of DR, and presence of non-DR pathologies. A convolutional neural network with Inception V3 network architecture was trained to assess image gradeability. Images were divided into training and test sets, and 10-fold cross-validation was performed.Results:A total of 1,377 images from 537 patients (56.1% female, median age 58) were analyzed. Ophthalmologists classified 25.9% of images as ungradable. Of gradable images, 18.6% had DR of varying degrees and 26.5% had non-DR pathology. 10 fold cross-validation produced an average area under receiver operating characteristic curve (AUC) of 0.922 (standard deviation: 0.027, range: 0.882 to 0.961). The final model exhibited similar test set performance with an AUC of 0.924.Conclusions:This model accurately assesses gradeability of nonmydriatic retinal images. It could be used for increasing the efficiency of DR screening programs by enabling point-of-care identification of poor-quality images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汪jy发布了新的文献求助10
刚刚
lll发布了新的文献求助10
刚刚
ssx完成签到,获得积分10
1秒前
相知发布了新的文献求助10
1秒前
wanci应助我势在必得采纳,获得10
2秒前
yuefeng发布了新的文献求助10
2秒前
小王同学完成签到 ,获得积分10
3秒前
小绵羊完成签到,获得积分10
4秒前
英俊的铭应助子车谷波采纳,获得10
4秒前
5秒前
5秒前
zzh关注了科研通微信公众号
5秒前
丘比特应助张朵朵采纳,获得10
5秒前
5秒前
小马甲应助妮妮采纳,获得10
5秒前
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
jyz发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
一谩完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
香蕉觅云应助周周采纳,获得10
11秒前
wjx发布了新的文献求助10
12秒前
wjx发布了新的文献求助10
12秒前
wjx发布了新的文献求助10
12秒前
wjx发布了新的文献求助10
12秒前
wjx发布了新的文献求助10
12秒前
wjx发布了新的文献求助10
12秒前
wjx发布了新的文献求助10
12秒前
wjx发布了新的文献求助30
12秒前
wjx发布了新的文献求助10
12秒前
wjx发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Barth, Derrida and the Language of Theology 500
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
Plant–Pollinator Interactions: From Specialization to Generalization 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3594127
求助须知:如何正确求助?哪些是违规求助? 3161604
关于积分的说明 9536330
捐赠科研通 2865341
什么是DOI,文献DOI怎么找? 1574647
邀请新用户注册赠送积分活动 739727
科研通“疑难数据库(出版商)”最低求助积分说明 723585