A novel fractional grey system model with non-singular exponential kernel for forecasting enrollments

核(代数) 水准点(测量) 指数函数 计算机科学 超参数 订单(交换) 机器学习 操作员(生物学) 人工智能 数学 数学分析 财务 地理 化学 经济 抑制因子 组合数学 基因 转录因子 生物化学 大地测量学
作者
Wanli Xie,Chong Liu,Wen-Ze Wu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:219: 119652-119652 被引量:13
标识
DOI:10.1016/j.eswa.2023.119652
摘要

The precise enrollment forecast facilitates decision-making and ensures that educational resources are distributed fairly throughout the school system. It is, however, challenging to evaluate enrollment trends in small samples due to both internal and external factors. In order to address this issue, we present EFGM(r, 1, ect), a novel fractional-order grey prediction model based on the fractional derivative (FD) and newly proposed Riemann fractional accumulated generating operator with exponential kernel (EFAGO). The hyperparameters of the new model are calculated using the whale optimization algorithm (WOA). The proposed model was validated by using data from Shanghai, Hubei, Shaanxi and Jilin, and we drew some conclusions from the experimental results. According to our findings, the performance of our model is comparable to that of the benchmark model (including machine learning models and previous grey prediction models). During a subsequent test, the newly built model was used to predict changes in enrollment, and the results indicated that it was accurate in predicting enrollment changes. In conclusion, the authors offer some suggestions to assist decision-makers in ensuring that the educational system grows in a balanced and sustainable way over the next five years.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DanniSun完成签到,获得积分10
1秒前
1秒前
zkxin完成签到,获得积分10
1秒前
wjj完成签到,获得积分10
1秒前
Johnason_ZC完成签到 ,获得积分10
2秒前
CyrusSo524应助雪白的山雁采纳,获得10
2秒前
沉静丹寒完成签到,获得积分10
2秒前
777完成签到,获得积分10
2秒前
2秒前
内向翰完成签到,获得积分10
2秒前
3秒前
头发乱了完成签到,获得积分10
4秒前
4秒前
烟花应助wanye采纳,获得10
5秒前
沉静丹寒发布了新的文献求助10
5秒前
6秒前
飘逸的滑板完成签到,获得积分20
6秒前
小二郎应助Li采纳,获得10
6秒前
op06d完成签到,获得积分10
6秒前
在水一方应助耽书是宿缘采纳,获得10
7秒前
7秒前
灵巧的月光完成签到 ,获得积分20
7秒前
7秒前
8秒前
忧虑的羊发布了新的文献求助10
9秒前
Vo发布了新的文献求助10
9秒前
Liuuhhua发布了新的文献求助10
9秒前
共享精神应助典雅的俊驰采纳,获得10
10秒前
冷艳的冰旋完成签到,获得积分10
10秒前
11秒前
11秒前
牟弼完成签到,获得积分10
11秒前
Guo5082完成签到,获得积分10
11秒前
桐桐应助594zqz采纳,获得10
12秒前
12秒前
大轩发布了新的文献求助10
12秒前
13秒前
斐卅发布了新的文献求助10
13秒前
13秒前
Louis发布了新的文献求助10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011533
求助须知:如何正确求助?哪些是违规求助? 3551208
关于积分的说明 11308043
捐赠科研通 3285452
什么是DOI,文献DOI怎么找? 1811090
邀请新用户注册赠送积分活动 886780
科研通“疑难数据库(出版商)”最低求助积分说明 811636