Which is the best Myocardial Work index for the prediction of coronary artery disease? A data meta‐analysis

接收机工作特性 冠状动脉疾病 再现性 医学 心脏病学 荟萃分析 内科学 计算机辅助设计 统计 数学 工程制图 工程类
作者
Antonio Parlavecchio,Giampaolo Vetta,Rodolfo Caminiti,Manuela Ajello,Michele Magnocavallo,Francesco Vetta,Rosario Foti,Pasquale Crea,Antonio Micari,Scipione Carerj,Domenico Giovanni Della Rocca,Gianluca Di Bella,Concetta Zito
出处
期刊:Echocardiography-a Journal of Cardiovascular Ultrasound and Allied Techniques [Wiley]
卷期号:40 (3): 217-226 被引量:5
标识
DOI:10.1111/echo.15537
摘要

Abstract Background Early diagnosis of Coronary Artery Disease (CAD) plays a key role to prevent adverse cardiac events such as myocardial infarction and Left Ventricular (LV) dysfunction. Myocardial Work (MW) indices derived from echocardiographic speckle tracking data in combination with non‐invasive blood pressure recordings seems promising to predict CAD even in the absence of impairments of standard echocardiographic parameters. Our aim was to compare the diagnostic accuracy of MW indices to predict CAD and to assess intra‐ and inter‐observer variability of MW through a meta‐analysis. Methods Electronic databases were searched for observational studies evaluating the MW indices diagnostic accuracy for predicting CAD and intra‐ and inter‐observer variability of MW indices. Pooled sensitivity, specificity, and Summary Receiver Operating Characteristic (SROC) curves were assessed. Results Five studies enrolling 501 patients met inclusion criteria. Global Constructive Work (GCW) had the best pooled sensitivity (89%) followed by GLS (84%), Global Work Index (GWI) (82%), Global Work Efficiency (GWE) (80%), and Global Wasted Work (GWW) (75%). GWE had the best pooled specificity (78%) followed by GWI (75%), GCW (70%), GLS (68%), and GWW (61%). GCW had the best accuracy according to SROC curves, with an area under the curve of 0.86 compared to 0.84 for GWI, 0.83 for GWE, 0.79 for GLS, and 0.74 for GWW. All MW indices had an excellent intra‐ and inter‐observer variability. Conclusions GCW is the best MW index proving best diagnostic accuracy in the prediction of CAD with an excellent reproducibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
白若可依发布了新的文献求助10
1秒前
2秒前
Coco发布了新的文献求助10
2秒前
研友_nPPz9n完成签到,获得积分10
3秒前
wmm完成签到,获得积分10
3秒前
4秒前
脑洞疼应助爱学习的辣妹采纳,获得10
4秒前
4秒前
初七发布了新的文献求助10
4秒前
hehe发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
6秒前
6秒前
由哎发布了新的文献求助10
7秒前
7秒前
GAN完成签到,获得积分10
7秒前
面壁者七號完成签到,获得积分10
8秒前
英俊的铭应助Ikejima采纳,获得10
9秒前
maymay发布了新的文献求助10
9秒前
9秒前
慕青应助czm采纳,获得10
9秒前
WH发布了新的文献求助10
10秒前
jammy发布了新的文献求助10
10秒前
冰coke完成签到,获得积分10
10秒前
璐璐0902完成签到,获得积分10
10秒前
动听的母鸡完成签到,获得积分10
10秒前
简单千秋发布了新的文献求助10
11秒前
露露完成签到,获得积分10
11秒前
11秒前
11秒前
yuan995发布了新的文献求助10
12秒前
wrx_KGM发布了新的文献求助10
13秒前
方乔杉完成签到,获得积分10
14秒前
酷酷李可爱婕完成签到 ,获得积分10
16秒前
田様应助pufanlg采纳,获得10
16秒前
可爱的涵菡完成签到,获得积分10
17秒前
小马甲应助没有银采纳,获得10
17秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160253
求助须知:如何正确求助?哪些是违规求助? 2811323
关于积分的说明 7891987
捐赠科研通 2470390
什么是DOI,文献DOI怎么找? 1315488
科研通“疑难数据库(出版商)”最低求助积分说明 630850
版权声明 602038