S2TUL: A Semi-Supervised Framework for Trajectory-User Linking

弹道 计算机科学 图形 约束(计算机辅助设计) 理论计算机科学 组分(热力学) 人工智能 机器学习 数学 几何学 天文 热力学 物理
作者
Liwei Deng,Hao Sun,Yan Zhao,Shuncheng Liu,Kai Zheng
标识
DOI:10.1145/3539597.3570410
摘要

Trajectory-User Linking (TUL) aiming to identify users of anonymous trajectories, has recently received increasing attention due to its wide range of applications, such as criminal investigation and personalized recommendation systems. In this paper, we propose a flexible Semi-Supervised framework for Trajectory-User Linking, namely S2TUL, which includes five components: trajectory-level graph construction, trajectory relation modeling, location-level sequential modeling, a classification layer and greedy trajectory-user relinking. The first two components are proposed to model the relationships among trajectories, in which three homogeneous graphs and two heterogeneous graphs are firstly constructed and then delivered into the graph convolutional networks for converting the discrete identities to hidden representations. Since the graph constructions are irrelevant to the corresponding users, the unlabelled trajectories can also be included in the graphs, which enables the framework to be trained in a semi-supervised way. Afterwards, the location-level sequential modeling component is designed to capture fine-grained intra-trajectory information by passing the trajectories into the sequential neural networks. Finally, these two level representations are concatenated into a classification layer to predict the user of the input trajectory. In the testing phase, a greedy trajectory-user relinking method is proposed to assure the linking results satisfy the timespan overlap constraint. We conduct extensive experiments on three public datasets with six representative competitors. The evaluation results demonstrate the effectiveness of the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cream萱发布了新的文献求助10
刚刚
1秒前
不发二区不改名完成签到 ,获得积分10
2秒前
顾矜应助令狐擎宇采纳,获得10
3秒前
3秒前
4秒前
仲乔妹完成签到,获得积分10
4秒前
流露发布了新的文献求助10
4秒前
薄荷源星球完成签到,获得积分10
5秒前
5秒前
雪山飞龙发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
充电宝应助DD采纳,获得10
7秒前
李健的小迷弟应助611采纳,获得30
7秒前
我是老大应助文艺的馒头采纳,获得10
7秒前
JL完成签到,获得积分10
8秒前
布布完成签到,获得积分10
8秒前
veraonly完成签到,获得积分20
8秒前
小纪发布了新的文献求助10
8秒前
丘比特应助坑坑采纳,获得10
9秒前
9秒前
Cynthia完成签到 ,获得积分10
9秒前
Firstoronre完成签到,获得积分10
9秒前
风吹不到海湾完成签到,获得积分10
9秒前
9秒前
Cream萱完成签到,获得积分20
10秒前
10秒前
CodeCraft应助ZJJ静采纳,获得10
10秒前
乌鲁鲁星居民完成签到,获得积分10
10秒前
NexusExplorer应助栗子采纳,获得10
11秒前
洛敏夕5743发布了新的文献求助10
11秒前
无情人英完成签到 ,获得积分10
11秒前
11秒前
12秒前
kk发布了新的文献求助10
12秒前
12秒前
12秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735079
求助须知:如何正确求助?哪些是违规求助? 3278971
关于积分的说明 10012522
捐赠科研通 2995555
什么是DOI,文献DOI怎么找? 1643499
邀请新用户注册赠送积分活动 781304
科研通“疑难数据库(出版商)”最低求助积分说明 749351