交易激励
过氧化物酶体增殖物激活受体
过氧化物酶体
受体
化学
环境化学
生物
内科学
转录因子
生物化学
医学
基因
作者
Xian Sun,Yanqing Xie,Xiyang Zhang,Jiebing Song,Yuping Wu
标识
DOI:10.1021/acs.est.2c05044
摘要
The potential risks of per- and polyfluoroalkyl substance (PFAS) accumulation in nearshore dolphins are not well understood. Here, transcriptional activities of 12 PFAS on peroxisome proliferator-activated receptors (PPAR-α, -β/δ, and -γ) in Indo-Pacific humpback dolphins (Sousa chinensis) were evaluated. All PFAS activated scPPAR-α in a dose-dependent manner. PFHpA exhibited the highest induction equivalency factors (IEFs). The order of IEFs for other PFAS was as follows: PFOA > PFNA > PFHxA > PFPeA > PFHxS > PFBA > PFOS > PFBuS ≈ PFDA ≫ PFUnDA and PFDoDA (not activated). The total induction equivalents (∑IEQs, 5537 ng/g wet weight) indicated that more attention should be paid to investigating contamination levels in dolphins, especially in PFOS (82.8% contribution to the ∑IEQs). The scPPAR-β/δ and -γ were not affected by any PFAS, except for PFOS, PFNA, and PFDA. Furthermore, PFNA and PFDA could induce higher PPAR-β/δ and PPAR-γ-mediated transcriptional activities than PFOA. Compared to human beings, PFAS might be more potent PPAR-α activators in humpback dolphins, suggesting that the dolphins may be more susceptible to the adverse effects of PFAS. Our results may be instructive for understanding the impacts of PFAS on marine mammal health due to the identical PPAR ligand-binding domain.
科研通智能强力驱动
Strongly Powered by AbleSci AI