清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

SAR Image Change Detection in Spatial-Frequency Domain Based on Attention Mechanism and Gated Linear Unit

计算机科学 变更检测 人工智能 合成孔径雷达 模式识别(心理学) 聚类分析 特征(语言学) 特征提取 频域 目标检测 计算机视觉 哲学 语言学
作者
Chunhui Zhao,Lirui Ma,Lu Wang,Tomoaki Ohtsuki,P. Takis Mathiopoulos,Yong Wang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:12
标识
DOI:10.1109/lgrs.2023.3238112
摘要

Change detection based on synthetic aperture radar (SAR) images is an important application in the remote-sensing technology field. However, the lack of labeled data has been a difficult problem in SAR image detection, especially for pixel-level change detection. In this letter, we propose a novel unsupervised change detection algorithm, which improves the detection accuracy by exploring features from both spatial and frequency domains of SAR images. In particular, first clustering is used as preclassification to obtain pseudo-labels and then by incorporating classifiers and pseudo-labels in terms of feature learning, a novel unsupervised detection algorithm is proposed. To improve the sensitivity of the algorithm to changed details and enhance the antinoise ability of the change detection network, the attention mechanism (AM) is integrated into the network to fully extract important spatial structure information. Moreover, a multidomain fusion module is proposed to integrate spatial and frequency domain features into complementary feature representations. This module contains multiregion features weighted by the channel-spatial AM and deep features filtered out by the gated linear units (GLUs) in the frequency domain. To verify the effectiveness of the proposed algorithm, it is compared against the other four SAR image change detection algorithms using three real datasets. The experimental results show that the proposed method outperforms the other four algorithms in terms of percent correct classification (PCC) and Kappa coefficient (KC).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
29秒前
爱静静应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
爱静静应助科研通管家采纳,获得10
32秒前
37秒前
1分钟前
草木完成签到,获得积分10
1分钟前
1分钟前
慕青应助姚倩倩采纳,获得10
2分钟前
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
姚倩倩发布了新的文献求助10
2分钟前
2分钟前
3分钟前
有终完成签到 ,获得积分10
3分钟前
lucky完成签到 ,获得积分10
3分钟前
清脆安南完成签到 ,获得积分10
3分钟前
3分钟前
丘比特应助姚倩倩采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
5分钟前
方白秋完成签到,获得积分10
5分钟前
believe完成签到,获得积分10
5分钟前
月儿完成签到 ,获得积分10
5分钟前
青出于蓝蔡完成签到,获得积分10
5分钟前
快乐半山发布了新的文献求助10
5分钟前
起风了完成签到 ,获得积分10
5分钟前
快乐半山完成签到,获得积分20
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
KIKIup发布了新的文献求助10
7分钟前
7分钟前
7分钟前
美好蜻蜓完成签到 ,获得积分10
8分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3338996
求助须知:如何正确求助?哪些是违规求助? 2967044
关于积分的说明 8627876
捐赠科研通 2646460
什么是DOI,文献DOI怎么找? 1449226
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660162