已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Investigation on the compaction process of steel bridge deck pavement based on DEM-FEM coupling model

压实 有限元法 沥青 结构工程 工程类 锤子 离散元法 联轴节(管道) 岩土工程 甲板 材料科学 机械工程 复合材料 机械 物理
作者
Gang Liu,Zhendong Qian,Xiaoyun Wu,Leilei Chen,Y. Liu
出处
期刊:International Journal of Pavement Engineering [Taylor & Francis]
卷期号:24 (1) 被引量:7
标识
DOI:10.1080/10298436.2023.2169443
摘要

ABSTRACTCompared with the compaction of general highway asphalt pavement, that of steel bridge deck pavement (SBDP) is more complicated and vulnerable due to special supporting conditions and severe construction environment. Besides, the existing simulation models are not suitable for the analysis of SBDP compaction. To clarify the compaction mechanism and characteristics of SBDP under unfavorable construction conditions, the particles were generated using a random particle generation algorithm and the asphalt mixture layer was simulated through the discrete element method (DEM); the steel bridge deck with weld seam was taken as an example of unfavorable external conditions and simulated through the finite element method (FEM). On this basis, the spatial movement and contact state of the particles during the compaction process were tracked and investigated using the DEM-FEM coupling model. Results show that the DEM-FEM coupling model is effective and feasible to simulate SBDP compaction process. The spatial movement and contact state of the particles are described. The findings could contribute to improving SBDP compaction quality. The coupling of DEM-FEM also provides the method reference to the research of other SBDP compaction problems, such as the influence of temperature field variation and bridge vibration.KEYWORDS: Steel bridge deck pavementcompaction processDEM-FEM coupling modelcompaction mechanismspatial movementcontact state Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe authors gratefully appreciate the funding support for this research from the National Natural Science Foundation of China (No. 52178419 & 51878167) and the China Scholarship Council (CSC).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘刘完成签到 ,获得积分10
1秒前
fuyuting完成签到 ,获得积分10
1秒前
一只苦瓜应助彦子采纳,获得10
2秒前
浮游应助lxg采纳,获得10
4秒前
7秒前
希里完成签到,获得积分10
8秒前
浮游应助chengmin采纳,获得10
8秒前
乐乐应助Drwang采纳,获得10
9秒前
核桃应助winnie采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得30
9秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得30
10秒前
10秒前
李健应助科研通管家采纳,获得30
10秒前
10秒前
思源应助科研通管家采纳,获得10
10秒前
友好珩应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
独特的高山完成签到 ,获得积分10
10秒前
11秒前
nancyrui发布了新的文献求助10
11秒前
漂亮白枫发布了新的文献求助10
15秒前
15秒前
东东东发布了新的文献求助10
15秒前
15秒前
16秒前
ev-nano完成签到,获得积分10
16秒前
SciGPT应助B站萧亚轩采纳,获得10
20秒前
希里发布了新的文献求助10
25秒前
26秒前
26秒前
31秒前
31秒前
chc发布了新的文献求助10
32秒前
32秒前
33秒前
34秒前
35秒前
xuli21315完成签到 ,获得积分10
36秒前
太叔明辉发布了新的文献求助10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4943941
求助须知:如何正确求助?哪些是违规求助? 4209072
关于积分的说明 13084616
捐赠科研通 3988544
什么是DOI,文献DOI怎么找? 2183766
邀请新用户注册赠送积分活动 1199218
关于科研通互助平台的介绍 1111951