Simulating multiple scenarios of land use/cover change using a coupled model to capture ecological and economic effects

最大化 土地覆盖 比例(比率) 环境科学 环境资源管理 土地利用 生态学 计算机科学 经济模型 土地利用、土地利用的变化和林业 地理 经济 数学 生物 数学优化 宏观经济学 地图学
作者
Yuechen Li,Xian Liu,Yue Wang,He Zhang
出处
期刊:Land Degradation & Development [Wiley]
卷期号:34 (10): 2862-2879 被引量:3
标识
DOI:10.1002/ldr.4653
摘要

Abstract The conflict between the demands of ecological protection and economic development is increasingly prominent. Land use change is sensitive to whether economic or ecological profits dominate, and prediction of future land use changes has become an important scientific issue. This article constructs a coupled model that comprises the grey model (GM), the fuzzy multiple objective linear programming model (FMOLP) and the future land use simulation model (FLUS). We used this model to calculate a macro‐scale quantitative forecast using the top‐down GM‐FMOLP model, and calculated micro‐scale spatial simulations of land use/cover change (LUCC) using the bottom‐up FLUS model under three dissimilar future scenarios, with different emphases on ecological and economic benefits. The scenarios were designed to meet different planning requirements in Chongqing: ecological benefits maximization, economic benefits maximization, and combined ecological and economic benefits maximization. The proposed model, FLUS, was applied to a LUCC simulation for Chongqing in 2015, beginning from verified historical land use data from 2010. The results show that the simulation agrees well with the actual land use in 2015. The overall accuracy and kappa coefficient are 85.92% and 0.76, respectively, which indicates the model performs well. The three land use types with the highest producer and user accuracies are forest, cropland and water areas. The GM‐FMOLP model was used to forecast future LUCC quantity demand, and the FLUS model was then used to calculate spatial predictions for the three scenarios for 2040. The prediction results for the six land use types were significantly different under the three different scenarios. The total areas of forest, urban land and water increased by different degrees under the three scenarios, and the unused land area dwindled. Cropland areas were largely converted into forest, urban land and water areas. The increases in forest and urban land areas generally represents internal gap‐filling between disparate areas and peripheral expansion of areas of the same land use type. The increase in water area results from increased surface runoff in mountainous valleys with severe terrain. Areas of unused land are fully transformed into other land use types. The outcomes from the designed scenarios demonstrate that the proposed models are reliable and effective for future LUCC simulation, and highlight key areas where land use changes differently according to the scenario. In summary, in the predictions for the scenario that combined ecological and economic benefits maximization, each land use type tried to maximize ecological and economic benefits under the constraints, taking into account ecological safety and economic growth, which is in line with the coordination, comprehensiveness and binding requirements in Chongqing's development plan. Therefore, this scenario becomes the optimal scenario for land use optimization in Chongqing in the future. This study provides an example of the application of simulation and forecast models in land use management, remediation and urban planning, and addresses the growing requirement for low‐cost and effective tools for prediction of dynamic land use succession patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小赵完成签到,获得积分10
刚刚
zhui发布了新的文献求助10
刚刚
刚刚
1秒前
sakurai应助Maxw采纳,获得10
1秒前
xiangxl发布了新的文献求助10
1秒前
1秒前
2秒前
UGO发布了新的文献求助10
2秒前
lh发布了新的文献求助10
2秒前
乐乐应助个性尔槐采纳,获得10
2秒前
希望天下0贩的0应助瑶625采纳,获得10
3秒前
tengli完成签到,获得积分20
3秒前
劲秉应助坚定迎天采纳,获得20
3秒前
桐桐应助杨枝甘露樱桃采纳,获得10
4秒前
搜集达人应助zhuzhu采纳,获得20
4秒前
LiShin发布了新的文献求助10
5秒前
末岛发布了新的文献求助10
5秒前
5秒前
coffee完成签到,获得积分10
6秒前
李来仪发布了新的文献求助10
6秒前
长安完成签到,获得积分10
7秒前
Hao完成签到,获得积分10
7秒前
JamesPei应助王小志采纳,获得10
7秒前
詹密完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
酷波er应助NEMO采纳,获得10
10秒前
10秒前
10秒前
10秒前
情怀应助shirleeyeahe采纳,获得10
10秒前
11秒前
元元应助xzy采纳,获得20
11秒前
泥花完成签到,获得积分10
11秒前
247793325完成签到,获得积分20
11秒前
眼睛大的冰岚完成签到,获得积分10
11秒前
YY完成签到 ,获得积分10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794