Simulating multiple scenarios of land use/cover change using a coupled model to capture ecological and economic effects

最大化 土地覆盖 比例(比率) 环境科学 环境资源管理 土地利用 生态学 计算机科学 经济模型 土地利用、土地利用的变化和林业 地理 经济 数学 生物 数学优化 地图学 宏观经济学
作者
Yuechen Li,Xian Liu,Yue Wang,He Zhang
出处
期刊:Land Degradation & Development [Wiley]
卷期号:34 (10): 2862-2879 被引量:3
标识
DOI:10.1002/ldr.4653
摘要

Abstract The conflict between the demands of ecological protection and economic development is increasingly prominent. Land use change is sensitive to whether economic or ecological profits dominate, and prediction of future land use changes has become an important scientific issue. This article constructs a coupled model that comprises the grey model (GM), the fuzzy multiple objective linear programming model (FMOLP) and the future land use simulation model (FLUS). We used this model to calculate a macro‐scale quantitative forecast using the top‐down GM‐FMOLP model, and calculated micro‐scale spatial simulations of land use/cover change (LUCC) using the bottom‐up FLUS model under three dissimilar future scenarios, with different emphases on ecological and economic benefits. The scenarios were designed to meet different planning requirements in Chongqing: ecological benefits maximization, economic benefits maximization, and combined ecological and economic benefits maximization. The proposed model, FLUS, was applied to a LUCC simulation for Chongqing in 2015, beginning from verified historical land use data from 2010. The results show that the simulation agrees well with the actual land use in 2015. The overall accuracy and kappa coefficient are 85.92% and 0.76, respectively, which indicates the model performs well. The three land use types with the highest producer and user accuracies are forest, cropland and water areas. The GM‐FMOLP model was used to forecast future LUCC quantity demand, and the FLUS model was then used to calculate spatial predictions for the three scenarios for 2040. The prediction results for the six land use types were significantly different under the three different scenarios. The total areas of forest, urban land and water increased by different degrees under the three scenarios, and the unused land area dwindled. Cropland areas were largely converted into forest, urban land and water areas. The increases in forest and urban land areas generally represents internal gap‐filling between disparate areas and peripheral expansion of areas of the same land use type. The increase in water area results from increased surface runoff in mountainous valleys with severe terrain. Areas of unused land are fully transformed into other land use types. The outcomes from the designed scenarios demonstrate that the proposed models are reliable and effective for future LUCC simulation, and highlight key areas where land use changes differently according to the scenario. In summary, in the predictions for the scenario that combined ecological and economic benefits maximization, each land use type tried to maximize ecological and economic benefits under the constraints, taking into account ecological safety and economic growth, which is in line with the coordination, comprehensiveness and binding requirements in Chongqing's development plan. Therefore, this scenario becomes the optimal scenario for land use optimization in Chongqing in the future. This study provides an example of the application of simulation and forecast models in land use management, remediation and urban planning, and addresses the growing requirement for low‐cost and effective tools for prediction of dynamic land use succession patterns.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
Fancy应助羊羊采纳,获得10
2秒前
yznfly应助机灵柚子采纳,获得50
2秒前
3秒前
4秒前
sikang发布了新的文献求助10
4秒前
wm关闭了wm文献求助
4秒前
999完成签到,获得积分10
4秒前
4秒前
5秒前
科研通AI6.1应助young采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
不相厌发布了新的文献求助10
5秒前
简单沛山发布了新的文献求助10
5秒前
安静代萱完成签到 ,获得积分10
6秒前
Echo完成签到,获得积分10
7秒前
7秒前
害羞的衫发布了新的文献求助10
9秒前
踏实水之发布了新的文献求助10
9秒前
陈露佳发布了新的文献求助10
10秒前
10秒前
牛油果发布了新的文献求助10
10秒前
10秒前
科研通AI2S应助科研爱好者采纳,获得10
10秒前
木木三完成签到 ,获得积分10
11秒前
优秀的小蚂蚁完成签到,获得积分10
11秒前
搜集达人应助sikang采纳,获得10
12秒前
12秒前
llm19完成签到,获得积分10
12秒前
sssjjjxx完成签到,获得积分20
12秒前
imi发布了新的文献求助10
13秒前
天天快乐应助Koi采纳,获得10
13秒前
谢谢大佬完成签到,获得积分10
14秒前
深情安青应助夏沫星星球采纳,获得10
14秒前
keanu发布了新的文献求助10
15秒前
15秒前
木木三关注了科研通微信公众号
15秒前
华仔应助Zzzz采纳,获得10
15秒前
害羞的衫完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762181
求助须知:如何正确求助?哪些是违规求助? 5534311
关于积分的说明 15402288
捐赠科研通 4898393
什么是DOI,文献DOI怎么找? 2634850
邀请新用户注册赠送积分活动 1583000
关于科研通互助平台的介绍 1538201