Road traffic accident prediction for mixed traffic flow using artificial neural network

人工神经网络 流量(计算机网络) 运输工程 计算机科学 可预测性 工程类 人工智能 计算机安全 统计 数学
作者
Mayura Yeole,R.K. Jain,Radhika Menon
出处
期刊:Materials Today: Proceedings [Elsevier]
卷期号:77: 832-837 被引量:4
标识
DOI:10.1016/j.matpr.2022.11.490
摘要

Transport scenarios in developing countries are fundamentally different from those in developed countries. The latter consists primarily of passenger cars and can be adequately described as “homogeneous” traffic, but the former consists of vehicle types with different static and dynamic characteristics that occupy the same right of way. Vehicle movement is asynchronous. Few studies have attempted to understand the characteristics of mixed traffic. This article explores the sharing attributes and influencing causes of traffic accidents in a mixed traffic area. A predictability model is employed to describe the connection between highway disasters and appropriate constraints such as traffic capacity, road provisions, and atmosphere issues. In this paper, the comparison has been done between the Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) predictive models. The study has been conducted at Pimpri Chinchwad Muncipal Corporation (PCMC) region of Pune, Maharashtra, India. For this work, nine years data has been used ranging from the year 2011 to 2019. Results revels that, maximum numbers of accidents were occurred in clear weather condition. Distinctive accidents were occurred due to overloaded vehicle conditions. Also it has been found that the less number of female drivers are responsible for accident. Forecasting model using ANN presents outstanding precision. In this study, additional prominence has been given to the real constraints which are accountable for accident cause in heterogeneous traffic flow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无私的易蓉完成签到,获得积分10
刚刚
香蕉觅云应助干雅柏采纳,获得10
刚刚
1秒前
小二郎应助nlm采纳,获得10
1秒前
kevin发布了新的文献求助10
1秒前
1秒前
可研发布了新的文献求助10
1秒前
wanci应助森森采纳,获得10
1秒前
恋空发布了新的文献求助10
2秒前
2秒前
3秒前
didi发布了新的文献求助30
4秒前
田小胖完成签到,获得积分10
4秒前
4秒前
自觉远山完成签到 ,获得积分10
4秒前
4秒前
4秒前
彩色的襄完成签到 ,获得积分10
4秒前
干雅柏完成签到,获得积分10
4秒前
5秒前
怕黑荠应助WZY采纳,获得10
6秒前
科研岗发布了新的文献求助10
6秒前
聪明乐巧完成签到,获得积分10
6秒前
JYY完成签到 ,获得积分10
7秒前
可研完成签到,获得积分10
7秒前
7秒前
8秒前
科研通AI5应助yaoyao采纳,获得10
8秒前
9秒前
轩辕唯雪发布了新的文献求助10
9秒前
叽里呱啦发布了新的文献求助10
9秒前
ZRBY发布了新的文献求助10
10秒前
天天快乐应助MinggniM采纳,获得30
11秒前
12秒前
12秒前
12秒前
13秒前
Jasper应助安静爆米花采纳,获得10
13秒前
隐形曼青应助复杂的凌文采纳,获得10
14秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560985
求助须知:如何正确求助?哪些是违规求助? 3134744
关于积分的说明 9409650
捐赠科研通 2834980
什么是DOI,文献DOI怎么找? 1558372
邀请新用户注册赠送积分活动 728097
科研通“疑难数据库(出版商)”最低求助积分说明 716686