Cross-Field Transformer for Diabetic Retinopathy Grading on Two-field Fundus Images

计算机科学 分级(工程) 眼底摄影 眼底(子宫) 人工智能 摄影 糖尿病性视网膜病变 领域(数学) 计算机视觉 眼科 医学 数学 艺术 土木工程 视力 荧光血管造影 纯数学 工程类 视觉艺术 糖尿病 内分泌学
作者
Junlin Hou,Jilan Xu,Fan Xiao,Rui-Wei Zhao,Yuejie Zhang,Haidong Zou,Lina Lu,Wenwen Xue,Rui Feng
标识
DOI:10.1109/bibm55620.2022.9995459
摘要

Automatic diabetic retinopathy (DR) grading based on fundus photography has been widely explored to benefit the routine screening and early treatment. Existing researches generally focus on single-field fundus images, which have limited field of view for precise eye examinations. In clinical applications, ophthalmologists adopt two-field fundus photography as the dominating tool, where the information from each field (i.e., macula-centric and optic disc-centric) is highly correlated and complementary, and benefits comprehensive decisions. However, automatic DR grading based on two-field fundus photography remains a challenging task due to the lack of publicly available datasets and effective fusion strategies. In this work, we first construct a new benchmark dataset (DRTiD) for DR grading, consisting of 3,100 two-field fundus images. To the best of our knowledge, it is the largest public DR dataset with diverse and high-quality two-field images. Then, we propose a novel DR grading approach, namely Cross-Field Transformer (CrossFiT), to capture the correspondence between two fields as well as the long-range spatial correlations within each field. Considering the inherent two-field geometric constraints, we particularly define aligned position embeddings to preserve relative consistent position in fundus. Besides, we perform masked cross-field attention during interaction to filter the noisy relations between fields. Extensive experiments on our DRTiD dataset and a public DeepDRiD dataset demonstrate the effectiveness of our CrossFiT network. The new dataset and the source code of CrossFiT will be publicly available at https://github.com/DU-VTS/DRTiD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助韭黄采纳,获得10
1秒前
daixan89完成签到 ,获得积分10
1秒前
百宝发布了新的文献求助10
1秒前
1秒前
刘晏均发布了新的文献求助10
1秒前
万能图书馆应助等待采纳,获得10
2秒前
冬瓜鑫发布了新的文献求助10
2秒前
XX完成签到,获得积分10
2秒前
佳思思完成签到,获得积分10
2秒前
李爱国应助lx采纳,获得10
2秒前
coconut完成签到,获得积分10
2秒前
积极废物完成签到 ,获得积分10
3秒前
fff完成签到,获得积分10
3秒前
wangxiaoyating完成签到,获得积分10
3秒前
4秒前
欢喜板凳完成签到 ,获得积分0
4秒前
大大超人关注了科研通微信公众号
5秒前
沉梦昂志_hzy完成签到,获得积分0
5秒前
orixero应助li采纳,获得10
5秒前
kmkz完成签到,获得积分10
5秒前
在水一方应助繁荣的悟空采纳,获得10
5秒前
6秒前
南宫书瑶完成签到,获得积分10
6秒前
fff发布了新的文献求助10
6秒前
6秒前
jam发布了新的文献求助20
7秒前
流萤完成签到,获得积分10
7秒前
hh关闭了hh文献求助
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
科研菜狗完成签到,获得积分10
8秒前
8秒前
美好山槐完成签到,获得积分10
8秒前
August完成签到,获得积分10
8秒前
smile完成签到,获得积分10
8秒前
daxiangjiao完成签到,获得积分10
9秒前
9秒前
飞艇发布了新的文献求助10
9秒前
李健的小迷弟应助罗克采纳,获得10
9秒前
111完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997