Cross-Field Transformer for Diabetic Retinopathy Grading on Two-field Fundus Images

计算机科学 分级(工程) 眼底摄影 眼底(子宫) 人工智能 摄影 糖尿病性视网膜病变 领域(数学) 计算机视觉 眼科 医学 数学 艺术 土木工程 视力 荧光血管造影 纯数学 工程类 视觉艺术 糖尿病 内分泌学
作者
Junlin Hou,Jilan Xu,Fan Xiao,Rui-Wei Zhao,Yuejie Zhang,Haidong Zou,Lina Lu,Wenwen Xue,Rui Feng
标识
DOI:10.1109/bibm55620.2022.9995459
摘要

Automatic diabetic retinopathy (DR) grading based on fundus photography has been widely explored to benefit the routine screening and early treatment. Existing researches generally focus on single-field fundus images, which have limited field of view for precise eye examinations. In clinical applications, ophthalmologists adopt two-field fundus photography as the dominating tool, where the information from each field (i.e., macula-centric and optic disc-centric) is highly correlated and complementary, and benefits comprehensive decisions. However, automatic DR grading based on two-field fundus photography remains a challenging task due to the lack of publicly available datasets and effective fusion strategies. In this work, we first construct a new benchmark dataset (DRTiD) for DR grading, consisting of 3,100 two-field fundus images. To the best of our knowledge, it is the largest public DR dataset with diverse and high-quality two-field images. Then, we propose a novel DR grading approach, namely Cross-Field Transformer (CrossFiT), to capture the correspondence between two fields as well as the long-range spatial correlations within each field. Considering the inherent two-field geometric constraints, we particularly define aligned position embeddings to preserve relative consistent position in fundus. Besides, we perform masked cross-field attention during interaction to filter the noisy relations between fields. Extensive experiments on our DRTiD dataset and a public DeepDRiD dataset demonstrate the effectiveness of our CrossFiT network. The new dataset and the source code of CrossFiT will be publicly available at https://github.com/DU-VTS/DRTiD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霍健霏发布了新的文献求助10
2秒前
cssfsa完成签到,获得积分10
2秒前
小二郎应助阿腾采纳,获得10
2秒前
2秒前
3秒前
骂我便秘完成签到,获得积分10
5秒前
乌冬面发布了新的文献求助10
5秒前
6秒前
勤恳万宝路完成签到,获得积分10
6秒前
阿腾发布了新的文献求助10
6秒前
猪猪hero发布了新的文献求助10
8秒前
9秒前
郑板桥完成签到,获得积分10
10秒前
11秒前
李大锤完成签到,获得积分10
13秒前
可爱的函函应助金不换采纳,获得10
14秒前
15秒前
16秒前
桐桐应助李小明采纳,获得30
16秒前
2024dsb完成签到 ,获得积分10
16秒前
流星雨发布了新的文献求助10
16秒前
zhenxing完成签到,获得积分10
16秒前
顾矜应助文光采纳,获得10
17秒前
17秒前
Troye完成签到,获得积分10
17秒前
18秒前
mary发布了新的文献求助10
18秒前
miaoquan完成签到,获得积分10
19秒前
星辰大海应助追寻依波采纳,获得10
20秒前
高亦凡完成签到 ,获得积分10
20秒前
20秒前
猪猪hero发布了新的文献求助30
21秒前
21秒前
苏素肃发布了新的文献求助10
23秒前
yu完成签到 ,获得积分10
23秒前
24秒前
24秒前
normankasimodo完成签到,获得积分10
25秒前
25秒前
mango完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540269
求助须知:如何正确求助?哪些是违规求助? 4626796
关于积分的说明 14601195
捐赠科研通 4567835
什么是DOI,文献DOI怎么找? 2504244
邀请新用户注册赠送积分活动 1481913
关于科研通互助平台的介绍 1453562