已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cross-Field Transformer for Diabetic Retinopathy Grading on Two-field Fundus Images

计算机科学 分级(工程) 眼底摄影 眼底(子宫) 人工智能 摄影 糖尿病性视网膜病变 领域(数学) 计算机视觉 眼科 医学 数学 艺术 土木工程 视力 荧光血管造影 纯数学 工程类 视觉艺术 糖尿病 内分泌学
作者
Junlin Hou,Jilan Xu,Fan Xiao,Ran Zhao,Yuejie Zhang,Haidong Zou,Lina Lu,Wenwen Xue,Rui Feng
标识
DOI:10.1109/bibm55620.2022.9995459
摘要

Automatic diabetic retinopathy (DR) grading based on fundus photography has been widely explored to benefit the routine screening and early treatment. Existing researches generally focus on single-field fundus images, which have limited field of view for precise eye examinations. In clinical applications, ophthalmologists adopt two-field fundus photography as the dominating tool, where the information from each field (i.e., macula-centric and optic disc-centric) is highly correlated and complementary, and benefits comprehensive decisions. However, automatic DR grading based on two-field fundus photography remains a challenging task due to the lack of publicly available datasets and effective fusion strategies. In this work, we first construct a new benchmark dataset (DRTiD) for DR grading, consisting of 3,100 two-field fundus images. To the best of our knowledge, it is the largest public DR dataset with diverse and high-quality two-field images. Then, we propose a novel DR grading approach, namely Cross-Field Transformer (CrossFiT), to capture the correspondence between two fields as well as the long-range spatial correlations within each field. Considering the inherent two-field geometric constraints, we particularly define aligned position embeddings to preserve relative consistent position in fundus. Besides, we perform masked cross-field attention during interaction to filter the noisy relations between fields. Extensive experiments on our DRTiD dataset and a public DeepDRiD dataset demonstrate the effectiveness of our CrossFiT network. The new dataset and the source code of CrossFiT will be publicly available at https://github.com/DU-VTS/DRTiD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
2秒前
欣慰的海豚完成签到 ,获得积分10
2秒前
3秒前
5秒前
5秒前
苏苏发布了新的文献求助10
6秒前
7秒前
服部平次发布了新的文献求助10
10秒前
小马发布了新的文献求助10
10秒前
科研通AI5应助火星上云朵采纳,获得10
11秒前
情怀应助errui采纳,获得10
12秒前
You发布了新的文献求助10
13秒前
科研通AI5应助年轻的听露采纳,获得100
14秒前
17秒前
17秒前
Abby完成签到,获得积分10
19秒前
希望天下0贩的0应助You采纳,获得10
20秒前
21秒前
调研昵称发布了新的文献求助10
22秒前
FashionBoy应助飞快的小猫咪采纳,获得10
23秒前
善学以致用应助LPL采纳,获得20
23秒前
errui发布了新的文献求助10
23秒前
24秒前
科研通AI5应助windy采纳,获得10
25秒前
大zeizei发布了新的文献求助10
26秒前
26秒前
26秒前
cocolu应助wqm采纳,获得10
27秒前
28秒前
28秒前
28秒前
闪闪的不悔完成签到,获得积分10
29秒前
sys完成签到,获得积分20
29秒前
星辰大海应助科研通管家采纳,获得10
30秒前
隐形曼青应助科研通管家采纳,获得10
30秒前
zhongu应助科研通管家采纳,获得10
30秒前
华仔应助科研通管家采纳,获得10
30秒前
完美世界应助科研通管家采纳,获得10
30秒前
情怀应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491104
求助须知:如何正确求助?哪些是违规求助? 3077781
关于积分的说明 9150387
捐赠科研通 2770232
什么是DOI,文献DOI怎么找? 1520217
邀请新用户注册赠送积分活动 704513
科研通“疑难数据库(出版商)”最低求助积分说明 702196