Cross-Field Transformer for Diabetic Retinopathy Grading on Two-field Fundus Images

计算机科学 分级(工程) 眼底摄影 眼底(子宫) 人工智能 摄影 糖尿病性视网膜病变 领域(数学) 计算机视觉 眼科 医学 数学 艺术 土木工程 视力 荧光血管造影 纯数学 工程类 视觉艺术 糖尿病 内分泌学
作者
Junlin Hou,Jilan Xu,Fan Xiao,Rui-Wei Zhao,Yuejie Zhang,Haidong Zou,Lina Lu,Wenwen Xue,Rui Feng
标识
DOI:10.1109/bibm55620.2022.9995459
摘要

Automatic diabetic retinopathy (DR) grading based on fundus photography has been widely explored to benefit the routine screening and early treatment. Existing researches generally focus on single-field fundus images, which have limited field of view for precise eye examinations. In clinical applications, ophthalmologists adopt two-field fundus photography as the dominating tool, where the information from each field (i.e., macula-centric and optic disc-centric) is highly correlated and complementary, and benefits comprehensive decisions. However, automatic DR grading based on two-field fundus photography remains a challenging task due to the lack of publicly available datasets and effective fusion strategies. In this work, we first construct a new benchmark dataset (DRTiD) for DR grading, consisting of 3,100 two-field fundus images. To the best of our knowledge, it is the largest public DR dataset with diverse and high-quality two-field images. Then, we propose a novel DR grading approach, namely Cross-Field Transformer (CrossFiT), to capture the correspondence between two fields as well as the long-range spatial correlations within each field. Considering the inherent two-field geometric constraints, we particularly define aligned position embeddings to preserve relative consistent position in fundus. Besides, we perform masked cross-field attention during interaction to filter the noisy relations between fields. Extensive experiments on our DRTiD dataset and a public DeepDRiD dataset demonstrate the effectiveness of our CrossFiT network. The new dataset and the source code of CrossFiT will be publicly available at https://github.com/DU-VTS/DRTiD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅莞完成签到,获得积分0
6秒前
谦让的含海完成签到,获得积分10
6秒前
辛勤的囧完成签到,获得积分10
18秒前
MC123完成签到,获得积分10
19秒前
wsafhgfjb完成签到,获得积分10
20秒前
23秒前
黄启烽完成签到,获得积分10
31秒前
文献属于所有科研人关注了科研通微信公众号
36秒前
啦啦啦啦啦完成签到,获得积分10
37秒前
39秒前
凌泉完成签到 ,获得积分10
40秒前
别有乾坤完成签到 ,获得积分10
40秒前
qaplay完成签到 ,获得积分0
41秒前
阿然完成签到,获得积分10
44秒前
天晴完成签到,获得积分10
47秒前
是真的完成签到 ,获得积分10
50秒前
yanmh完成签到,获得积分10
51秒前
kmzzy完成签到 ,获得积分10
56秒前
大汤圆圆完成签到 ,获得积分10
1分钟前
Gavin完成签到,获得积分10
1分钟前
嗡嗡完成签到,获得积分10
1分钟前
壮观的谷冬完成签到 ,获得积分0
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
活泼的南风完成签到,获得积分10
1分钟前
ZSZ完成签到,获得积分10
1分钟前
wei发布了新的文献求助10
1分钟前
是三石啊完成签到 ,获得积分10
1分钟前
xhsz1111完成签到 ,获得积分10
1分钟前
sweet完成签到 ,获得积分10
1分钟前
一一完成签到 ,获得积分10
1分钟前
zz321完成签到,获得积分10
1分钟前
chen完成签到,获得积分10
1分钟前
共享精神应助wei采纳,获得10
1分钟前
万能图书馆应助lzy303886采纳,获得10
1分钟前
星辉的斑斓完成签到 ,获得积分10
1分钟前
SerCheung完成签到,获得积分10
1分钟前
Brave发布了新的文献求助10
1分钟前
zhongxia完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565171
求助须知:如何正确求助?哪些是违规求助? 4650012
关于积分的说明 14689486
捐赠科研通 4591896
什么是DOI,文献DOI怎么找? 2519388
邀请新用户注册赠送积分活动 1491921
关于科研通互助平台的介绍 1463136