Cross-Field Transformer for Diabetic Retinopathy Grading on Two-field Fundus Images

计算机科学 分级(工程) 眼底摄影 眼底(子宫) 人工智能 摄影 糖尿病性视网膜病变 领域(数学) 计算机视觉 眼科 医学 数学 艺术 土木工程 视力 荧光血管造影 纯数学 工程类 视觉艺术 糖尿病 内分泌学
作者
Junlin Hou,Jilan Xu,Fan Xiao,Rui-Wei Zhao,Yuejie Zhang,Haidong Zou,Lina Lu,Wenwen Xue,Rui Feng
标识
DOI:10.1109/bibm55620.2022.9995459
摘要

Automatic diabetic retinopathy (DR) grading based on fundus photography has been widely explored to benefit the routine screening and early treatment. Existing researches generally focus on single-field fundus images, which have limited field of view for precise eye examinations. In clinical applications, ophthalmologists adopt two-field fundus photography as the dominating tool, where the information from each field (i.e., macula-centric and optic disc-centric) is highly correlated and complementary, and benefits comprehensive decisions. However, automatic DR grading based on two-field fundus photography remains a challenging task due to the lack of publicly available datasets and effective fusion strategies. In this work, we first construct a new benchmark dataset (DRTiD) for DR grading, consisting of 3,100 two-field fundus images. To the best of our knowledge, it is the largest public DR dataset with diverse and high-quality two-field images. Then, we propose a novel DR grading approach, namely Cross-Field Transformer (CrossFiT), to capture the correspondence between two fields as well as the long-range spatial correlations within each field. Considering the inherent two-field geometric constraints, we particularly define aligned position embeddings to preserve relative consistent position in fundus. Besides, we perform masked cross-field attention during interaction to filter the noisy relations between fields. Extensive experiments on our DRTiD dataset and a public DeepDRiD dataset demonstrate the effectiveness of our CrossFiT network. The new dataset and the source code of CrossFiT will be publicly available at https://github.com/DU-VTS/DRTiD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weiv发布了新的文献求助20
1秒前
111完成签到 ,获得积分10
3秒前
樱桃苏打水完成签到,获得积分10
3秒前
领导范儿应助嘿嘿采纳,获得10
5秒前
5秒前
今后应助摸俞采纳,获得10
7秒前
英俊的铭应助风中的天蓝采纳,获得10
7秒前
9秒前
zzznznnn完成签到,获得积分10
10秒前
科研通AI6应助俏皮的邴采纳,获得10
11秒前
月亮邮递员应助Hmzek采纳,获得20
11秒前
糖不太甜发布了新的文献求助10
11秒前
11秒前
Owen应助weiv采纳,获得10
12秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
maitiandehe发布了新的文献求助10
15秒前
sian发布了新的文献求助10
16秒前
冰冻西红柿完成签到 ,获得积分20
17秒前
Akim应助小嘿嘿采纳,获得10
17秒前
18秒前
18秒前
18秒前
uae发布了新的文献求助30
18秒前
zcn完成签到 ,获得积分20
19秒前
xy发布了新的文献求助10
20秒前
粥粥小弦应助酸酸采纳,获得20
21秒前
21秒前
雪白冥茗发布了新的文献求助30
22秒前
调皮千兰发布了新的文献求助10
23秒前
23秒前
情怀应助有梦想的咸鱼采纳,获得10
23秒前
Zx_1993应助有梦想的咸鱼采纳,获得20
23秒前
YZ发布了新的文献求助10
25秒前
圣晟胜完成签到,获得积分10
25秒前
hjc完成签到,获得积分10
25秒前
666888发布了新的文献求助10
26秒前
CodeCraft应助简单花花采纳,获得20
28秒前
裘香芦发布了新的文献求助10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421862
求助须知:如何正确求助?哪些是违规求助? 4536861
关于积分的说明 14155275
捐赠科研通 4453423
什么是DOI,文献DOI怎么找? 2442864
邀请新用户注册赠送积分活动 1434254
关于科研通互助平台的介绍 1411370