Cross-Field Transformer for Diabetic Retinopathy Grading on Two-field Fundus Images

计算机科学 分级(工程) 眼底摄影 眼底(子宫) 人工智能 摄影 糖尿病性视网膜病变 领域(数学) 计算机视觉 眼科 医学 数学 艺术 土木工程 视力 荧光血管造影 纯数学 工程类 视觉艺术 糖尿病 内分泌学
作者
Junlin Hou,Jilan Xu,Fan Xiao,Rui-Wei Zhao,Yuejie Zhang,Haidong Zou,Lina Lu,Wenwen Xue,Rui Feng
标识
DOI:10.1109/bibm55620.2022.9995459
摘要

Automatic diabetic retinopathy (DR) grading based on fundus photography has been widely explored to benefit the routine screening and early treatment. Existing researches generally focus on single-field fundus images, which have limited field of view for precise eye examinations. In clinical applications, ophthalmologists adopt two-field fundus photography as the dominating tool, where the information from each field (i.e., macula-centric and optic disc-centric) is highly correlated and complementary, and benefits comprehensive decisions. However, automatic DR grading based on two-field fundus photography remains a challenging task due to the lack of publicly available datasets and effective fusion strategies. In this work, we first construct a new benchmark dataset (DRTiD) for DR grading, consisting of 3,100 two-field fundus images. To the best of our knowledge, it is the largest public DR dataset with diverse and high-quality two-field images. Then, we propose a novel DR grading approach, namely Cross-Field Transformer (CrossFiT), to capture the correspondence between two fields as well as the long-range spatial correlations within each field. Considering the inherent two-field geometric constraints, we particularly define aligned position embeddings to preserve relative consistent position in fundus. Besides, we perform masked cross-field attention during interaction to filter the noisy relations between fields. Extensive experiments on our DRTiD dataset and a public DeepDRiD dataset demonstrate the effectiveness of our CrossFiT network. The new dataset and the source code of CrossFiT will be publicly available at https://github.com/DU-VTS/DRTiD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助Len采纳,获得30
1秒前
我在青年湖旁完成签到,获得积分10
2秒前
执着的蜗牛应助xiang采纳,获得10
2秒前
4秒前
小丸子完成签到 ,获得积分10
4秒前
Sweeney发布了新的文献求助30
6秒前
英姑应助知性的晓山采纳,获得20
6秒前
xiaolei001应助滕皓轩采纳,获得10
7秒前
xiaolei001应助滕皓轩采纳,获得10
7秒前
QQ糖发布了新的文献求助10
7秒前
9秒前
唐tang完成签到,获得积分20
10秒前
FashionBoy应助cc采纳,获得10
10秒前
10秒前
领导范儿应助小赵采纳,获得10
11秒前
13秒前
14秒前
14秒前
14秒前
Teferi发布了新的文献求助50
15秒前
张菁完成签到,获得积分10
16秒前
陈杰完成签到,获得积分20
17秒前
18秒前
18秒前
Rui发布了新的文献求助10
19秒前
搜集达人应助绿海采纳,获得10
19秒前
852应助huanir99采纳,获得10
19秒前
有钱完成签到,获得积分10
20秒前
20秒前
21秒前
加减乘除发布了新的文献求助10
21秒前
23秒前
24秒前
Myl发布了新的文献求助10
25秒前
小赵发布了新的文献求助10
25秒前
27秒前
27秒前
要减肥忆之完成签到,获得积分20
28秒前
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300309
求助须知:如何正确求助?哪些是违规求助? 4448241
关于积分的说明 13845431
捐赠科研通 4333898
什么是DOI,文献DOI怎么找? 2379231
邀请新用户注册赠送积分活动 1374395
关于科研通互助平台的介绍 1340037