Cross-Field Transformer for Diabetic Retinopathy Grading on Two-field Fundus Images

计算机科学 分级(工程) 眼底摄影 眼底(子宫) 人工智能 摄影 糖尿病性视网膜病变 领域(数学) 计算机视觉 眼科 医学 数学 艺术 土木工程 视力 荧光血管造影 纯数学 工程类 视觉艺术 糖尿病 内分泌学
作者
Junlin Hou,Jilan Xu,Fan Xiao,Rui-Wei Zhao,Yuejie Zhang,Haidong Zou,Lina Lu,Wenwen Xue,Rui Feng
标识
DOI:10.1109/bibm55620.2022.9995459
摘要

Automatic diabetic retinopathy (DR) grading based on fundus photography has been widely explored to benefit the routine screening and early treatment. Existing researches generally focus on single-field fundus images, which have limited field of view for precise eye examinations. In clinical applications, ophthalmologists adopt two-field fundus photography as the dominating tool, where the information from each field (i.e., macula-centric and optic disc-centric) is highly correlated and complementary, and benefits comprehensive decisions. However, automatic DR grading based on two-field fundus photography remains a challenging task due to the lack of publicly available datasets and effective fusion strategies. In this work, we first construct a new benchmark dataset (DRTiD) for DR grading, consisting of 3,100 two-field fundus images. To the best of our knowledge, it is the largest public DR dataset with diverse and high-quality two-field images. Then, we propose a novel DR grading approach, namely Cross-Field Transformer (CrossFiT), to capture the correspondence between two fields as well as the long-range spatial correlations within each field. Considering the inherent two-field geometric constraints, we particularly define aligned position embeddings to preserve relative consistent position in fundus. Besides, we perform masked cross-field attention during interaction to filter the noisy relations between fields. Extensive experiments on our DRTiD dataset and a public DeepDRiD dataset demonstrate the effectiveness of our CrossFiT network. The new dataset and the source code of CrossFiT will be publicly available at https://github.com/DU-VTS/DRTiD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
罗媛发布了新的文献求助10
2秒前
谦让大娘发布了新的文献求助10
4秒前
A高完成签到,获得积分10
4秒前
子辰完成签到,获得积分10
5秒前
小化发布了新的文献求助10
5秒前
小二郎应助xkkk采纳,获得10
6秒前
搜集达人应助beili采纳,获得10
7秒前
8秒前
小巧富完成签到,获得积分10
10秒前
MMI完成签到 ,获得积分10
12秒前
1234完成签到,获得积分20
12秒前
14秒前
17秒前
zhao完成签到,获得积分10
18秒前
ZengFly完成签到,获得积分10
18秒前
shushuwuwu发布了新的文献求助30
18秒前
惕守应助小化采纳,获得10
18秒前
真实的傲儿完成签到 ,获得积分10
20秒前
Cssss完成签到,获得积分10
20秒前
虞美人发布了新的文献求助10
21秒前
华仔应助追风少年采纳,获得10
21秒前
稳重寒梦完成签到,获得积分10
22秒前
22秒前
liao发布了新的文献求助10
22秒前
23秒前
动听清炎完成签到,获得积分10
25秒前
Danish发布了新的文献求助10
28秒前
ccc发布了新的文献求助10
28秒前
罗媛完成签到,获得积分20
28秒前
222666完成签到,获得积分10
28秒前
善学以致用应助xixi采纳,获得10
29秒前
Jasper应助shushuwuwu采纳,获得10
30秒前
30秒前
32秒前
33秒前
33秒前
33秒前
小蘑菇应助熙慕采纳,获得10
34秒前
D-L@rabbit发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589963
求助须知:如何正确求助?哪些是违规求助? 4674416
关于积分的说明 14793871
捐赠科研通 4629469
什么是DOI,文献DOI怎么找? 2532480
邀请新用户注册赠送积分活动 1501159
关于科研通互助平台的介绍 1468527