Cross-Field Transformer for Diabetic Retinopathy Grading on Two-field Fundus Images

计算机科学 分级(工程) 眼底摄影 眼底(子宫) 人工智能 摄影 糖尿病性视网膜病变 领域(数学) 计算机视觉 眼科 医学 数学 艺术 土木工程 视力 荧光血管造影 纯数学 工程类 视觉艺术 糖尿病 内分泌学
作者
Junlin Hou,Jilan Xu,Fan Xiao,Rui-Wei Zhao,Yuejie Zhang,Haidong Zou,Lina Lu,Wenwen Xue,Rui Feng
标识
DOI:10.1109/bibm55620.2022.9995459
摘要

Automatic diabetic retinopathy (DR) grading based on fundus photography has been widely explored to benefit the routine screening and early treatment. Existing researches generally focus on single-field fundus images, which have limited field of view for precise eye examinations. In clinical applications, ophthalmologists adopt two-field fundus photography as the dominating tool, where the information from each field (i.e., macula-centric and optic disc-centric) is highly correlated and complementary, and benefits comprehensive decisions. However, automatic DR grading based on two-field fundus photography remains a challenging task due to the lack of publicly available datasets and effective fusion strategies. In this work, we first construct a new benchmark dataset (DRTiD) for DR grading, consisting of 3,100 two-field fundus images. To the best of our knowledge, it is the largest public DR dataset with diverse and high-quality two-field images. Then, we propose a novel DR grading approach, namely Cross-Field Transformer (CrossFiT), to capture the correspondence between two fields as well as the long-range spatial correlations within each field. Considering the inherent two-field geometric constraints, we particularly define aligned position embeddings to preserve relative consistent position in fundus. Besides, we perform masked cross-field attention during interaction to filter the noisy relations between fields. Extensive experiments on our DRTiD dataset and a public DeepDRiD dataset demonstrate the effectiveness of our CrossFiT network. The new dataset and the source code of CrossFiT will be publicly available at https://github.com/DU-VTS/DRTiD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fzh完成签到,获得积分10
4秒前
Jenny完成签到,获得积分10
6秒前
伟立完成签到,获得积分10
6秒前
13秒前
14秒前
然12138完成签到 ,获得积分10
14秒前
香蕉觅云应助SnownS采纳,获得10
14秒前
川荣李奈完成签到 ,获得积分10
18秒前
xinbowey发布了新的文献求助10
18秒前
火星上向珊完成签到,获得积分10
21秒前
23秒前
柳条儿完成签到,获得积分10
23秒前
如意幻枫完成签到,获得积分10
27秒前
28秒前
28秒前
渔婆发布了新的文献求助10
29秒前
31秒前
风趣的泥猴桃完成签到 ,获得积分10
32秒前
32秒前
zgsjymysmyy发布了新的文献求助30
33秒前
fuchao完成签到,获得积分10
33秒前
牧谷发布了新的文献求助10
34秒前
好吃的火龙果完成签到 ,获得积分10
35秒前
天边发布了新的文献求助10
36秒前
东方越彬发布了新的文献求助10
37秒前
赘婿应助sunny采纳,获得10
37秒前
37秒前
37秒前
SnownS完成签到,获得积分10
38秒前
123123发布了新的文献求助10
42秒前
SnownS发布了新的文献求助10
43秒前
43秒前
43秒前
汉堡包应助天边采纳,获得10
45秒前
PengqianGuo完成签到,获得积分10
47秒前
echo发布了新的文献求助10
47秒前
bkagyin应助cancan采纳,获得10
48秒前
亲情之友发布了新的文献求助10
48秒前
cc发布了新的文献求助10
51秒前
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566