Artificial neural network based modelling and optimization of microalgae microbial fuel cell

微生物燃料电池 人工神经网络 废水 响应面法 功率密度 环境科学 计算机科学 污水处理 工艺工程 最大化 决定系数 生物系统 生化工程 发电 环境工程 功率(物理) 人工智能 数学 机器学习 工程类 数学优化 生物 物理 量子力学
作者
Enas Taha Sayed,Hegazy Rezk,Mohammad Ali Abdelkareem,A.G. Olabi
出处
期刊:International Journal of Hydrogen Energy [Elsevier BV]
卷期号:52: 1015-1025 被引量:33
标识
DOI:10.1016/j.ijhydene.2022.12.081
摘要

Simultaneous wastewater treatment and energy harvesting is attractive topic these days. A microbial fuel cell is an electrochemical device that can be used effectively for this purpose. Microalgae-based MFC is a novel approach to extracting sustainable and economical energy by incorporating photosynthesis with MFC. This paper uses artificial intelligence to identify the best operational factors of microalgae microbial fuel cell (MMFC). The proposed methodology integrates artificial neural network (ANN) modelling and forensic-based investigation algorithm (FBI). Yeast concentration (%) and wastewater concentration (%) are used as decision variables during the optimization process, whereas the objective function is simultaneously maximization of power density and COD removal. Based on the measured data, a ANN model is designed to simulate the power density and COD removal in terms of yeast and wastewater concentrations. Compared with ANOVA, the values of coefficient-of-determination are increased. For the power density model, the coefficient-of-determination in the prediction is increased from 0.7275 to 0.9783 by around 34%. Whereas for the COD removal model, the coefficient-of-determination in the prediction is increased from 0.8512 to 0.9 by around 5.7%. Then, using FBI, the best concentrations of yeast and wastewater are identified to increase power density and COD removal simultaneously. To prove the superiority of the proposed methodology, the optimal parameters and best performance are compared with an optimized performance by response surface methodology and measured data. The performance of MMFC is increased by 2.24%, thanks to the integration between ANN and FBI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Snieno完成签到,获得积分10
刚刚
Cruffin发布了新的文献求助10
1秒前
1秒前
1秒前
04号洁洁完成签到,获得积分10
1秒前
2秒前
无聊的怀绿完成签到,获得积分10
2秒前
3秒前
Owen应助布吉岛采纳,获得10
3秒前
3秒前
yyt完成签到,获得积分10
4秒前
4秒前
白椋完成签到,获得积分10
4秒前
4秒前
5秒前
a553355发布了新的文献求助10
5秒前
ymlllym完成签到,获得积分10
5秒前
fengyehong发布了新的文献求助10
6秒前
gis发布了新的文献求助10
6秒前
6秒前
研友_VZG7GZ应助魈maker采纳,获得10
7秒前
why完成签到 ,获得积分10
7秒前
在水一方应助木子采纳,获得30
7秒前
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
10秒前
bowen完成签到,获得积分10
10秒前
11秒前
lihaifeng发布了新的文献求助10
11秒前
祎薇发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
13秒前
香蕉觅云应助小袁采纳,获得10
13秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958693
求助须知:如何正确求助?哪些是违规求助? 3504939
关于积分的说明 11121216
捐赠科研通 3236311
什么是DOI,文献DOI怎么找? 1788726
邀请新用户注册赠送积分活动 871307
科研通“疑难数据库(出版商)”最低求助积分说明 802691