Artificial neural network based modelling and optimization of microalgae microbial fuel cell

微生物燃料电池 人工神经网络 废水 响应面法 功率密度 环境科学 计算机科学 污水处理 工艺工程 最大化 决定系数 生物系统 生化工程 发电 环境工程 功率(物理) 人工智能 数学 机器学习 工程类 数学优化 生物 物理 量子力学
作者
Enas Taha Sayed,Hegazy Rezk,Mohammad Ali Abdelkareem,Abdul Ghani Olabi
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:52: 1015-1025 被引量:22
标识
DOI:10.1016/j.ijhydene.2022.12.081
摘要

Simultaneous wastewater treatment and energy harvesting is attractive topic these days. A microbial fuel cell is an electrochemical device that can be used effectively for this purpose. Microalgae-based MFC is a novel approach to extracting sustainable and economical energy by incorporating photosynthesis with MFC. This paper uses artificial intelligence to identify the best operational factors of microalgae microbial fuel cell (MMFC). The proposed methodology integrates artificial neural network (ANN) modelling and forensic-based investigation algorithm (FBI). Yeast concentration (%) and wastewater concentration (%) are used as decision variables during the optimization process, whereas the objective function is simultaneously maximization of power density and COD removal. Based on the measured data, a ANN model is designed to simulate the power density and COD removal in terms of yeast and wastewater concentrations. Compared with ANOVA, the values of coefficient-of-determination are increased. For the power density model, the coefficient-of-determination in the prediction is increased from 0.7275 to 0.9783 by around 34%. Whereas for the COD removal model, the coefficient-of-determination in the prediction is increased from 0.8512 to 0.9 by around 5.7%. Then, using FBI, the best concentrations of yeast and wastewater are identified to increase power density and COD removal simultaneously. To prove the superiority of the proposed methodology, the optimal parameters and best performance are compared with an optimized performance by response surface methodology and measured data. The performance of MMFC is increased by 2.24%, thanks to the integration between ANN and FBI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助半世千秋采纳,获得10
刚刚
上进生发布了新的文献求助10
刚刚
少年愁完成签到,获得积分10
1秒前
1秒前
wjw发布了新的文献求助10
1秒前
燕知南发布了新的文献求助10
1秒前
听风完成签到,获得积分10
1秒前
山奈完成签到,获得积分10
1秒前
情怀应助黄橙子采纳,获得10
1秒前
落寞飞烟完成签到,获得积分10
2秒前
3秒前
郭郭完成签到 ,获得积分10
3秒前
3秒前
科研通AI2S应助祗想静静嘚采纳,获得10
3秒前
SaSa发布了新的文献求助10
4秒前
queer发布了新的文献求助30
5秒前
如意厉完成签到,获得积分10
7秒前
CodeCraft应助唱歌不着调采纳,获得10
7秒前
Lucas应助陈隆采纳,获得10
7秒前
7秒前
李铭发布了新的文献求助10
8秒前
li关闭了li文献求助
9秒前
9秒前
文右三完成签到,获得积分10
10秒前
10秒前
学习完成签到,获得积分10
10秒前
11秒前
干净的时光应助oilmelech采纳,获得10
11秒前
JamesPei应助无私的笑蓝采纳,获得10
12秒前
12秒前
14秒前
14秒前
你大夫哥发布了新的文献求助10
14秒前
14秒前
14秒前
ASZXDW应助卡卡卡采纳,获得10
15秒前
15秒前
桐桐应助queer采纳,获得10
16秒前
舒畅发布了新的文献求助10
16秒前
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156110
求助须知:如何正确求助?哪些是违规求助? 2807513
关于积分的说明 7873605
捐赠科研通 2465844
什么是DOI,文献DOI怎么找? 1312456
科研通“疑难数据库(出版商)”最低求助积分说明 630107
版权声明 601905