Artificial neural network based modelling and optimization of microalgae microbial fuel cell

微生物燃料电池 人工神经网络 废水 响应面法 功率密度 环境科学 计算机科学 污水处理 工艺工程 最大化 决定系数 生物系统 生化工程 发电 环境工程 功率(物理) 人工智能 数学 机器学习 工程类 数学优化 生物 物理 量子力学
作者
Enas Taha Sayed,Hegazy Rezk,Mohammad Ali Abdelkareem,A.G. Olabi
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:52: 1015-1025 被引量:33
标识
DOI:10.1016/j.ijhydene.2022.12.081
摘要

Simultaneous wastewater treatment and energy harvesting is attractive topic these days. A microbial fuel cell is an electrochemical device that can be used effectively for this purpose. Microalgae-based MFC is a novel approach to extracting sustainable and economical energy by incorporating photosynthesis with MFC. This paper uses artificial intelligence to identify the best operational factors of microalgae microbial fuel cell (MMFC). The proposed methodology integrates artificial neural network (ANN) modelling and forensic-based investigation algorithm (FBI). Yeast concentration (%) and wastewater concentration (%) are used as decision variables during the optimization process, whereas the objective function is simultaneously maximization of power density and COD removal. Based on the measured data, a ANN model is designed to simulate the power density and COD removal in terms of yeast and wastewater concentrations. Compared with ANOVA, the values of coefficient-of-determination are increased. For the power density model, the coefficient-of-determination in the prediction is increased from 0.7275 to 0.9783 by around 34%. Whereas for the COD removal model, the coefficient-of-determination in the prediction is increased from 0.8512 to 0.9 by around 5.7%. Then, using FBI, the best concentrations of yeast and wastewater are identified to increase power density and COD removal simultaneously. To prove the superiority of the proposed methodology, the optimal parameters and best performance are compared with an optimized performance by response surface methodology and measured data. The performance of MMFC is increased by 2.24%, thanks to the integration between ANN and FBI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HEIKU应助Ying采纳,获得10
1秒前
Zzz完成签到,获得积分10
1秒前
LC发布了新的文献求助20
1秒前
刘怀蕊完成签到,获得积分10
2秒前
2秒前
LLL发布了新的文献求助10
2秒前
跳跃乘风完成签到,获得积分10
3秒前
Anxinxin完成签到,获得积分10
3秒前
阳佟冬卉完成签到,获得积分10
4秒前
Silence发布了新的文献求助10
4秒前
4秒前
通通通发布了新的文献求助10
5秒前
帅气的秘密完成签到 ,获得积分10
5秒前
领导范儿应助马建国采纳,获得10
5秒前
lysixsixsix完成签到,获得积分10
5秒前
6秒前
jia完成签到,获得积分10
6秒前
欣喜乐天发布了新的文献求助10
6秒前
Kiyotaka完成签到,获得积分10
6秒前
7秒前
季夏发布了新的文献求助10
7秒前
Tingshan发布了新的文献求助20
8秒前
背后的诺言完成签到 ,获得积分20
8秒前
GHOST完成签到,获得积分20
9秒前
9秒前
勤奋的蜗牛完成签到,获得积分20
9秒前
omo发布了新的文献求助10
9秒前
Akim应助糊糊采纳,获得10
10秒前
Zn应助dsjlove采纳,获得10
10秒前
月球宇航员完成签到,获得积分10
10秒前
10秒前
英姑应助亲爱的安德烈采纳,获得10
12秒前
今后应助workwork采纳,获得10
12秒前
12秒前
落后翠柏发布了新的文献求助10
12秒前
淡然凝丹完成签到,获得积分10
12秒前
Y_Jfeng完成签到,获得积分10
13秒前
潼熙甄完成签到 ,获得积分10
14秒前
Lucas应助糖糖采纳,获得10
14秒前
wyblobin发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762