阳极
材料科学
法拉第效率
化学气相沉积
硅
化学工程
锂(药物)
纳米技术
纳米颗粒
体积热力学
碳纤维
制作
涂层
基质(水族馆)
图层(电子)
复合材料
冶金
化学
电极
复合数
海洋学
量子力学
医学
替代医学
工程类
物理
物理化学
病理
内分泌学
地质学
作者
Yu Du,Guolin Hou,Zongxian Yang,Hebang Shi,Yafeng Guo,Decheng Li,Fangli Yuan
标识
DOI:10.1016/j.jallcom.2022.168587
摘要
Silicon (Si) has been proven to be the most potential anode material for the next-generation lithium-ion batteries (LIBs) because of its superior theoretical capacity (∼4200 mAh g−1). However, the huge volume changes, unstable solid-state interphase (SEI) layers, and large internal stresses upon the lithiation process severely limit the practical application for commercial LIBs anodes. Herein, we fabricate the carbon-coated Si/FeSi2 nanoparticles (Si/FeSi2 @C NPs) with volume control effect by fluidized bed chemical vapor deposition (FBCVD) method to solve the above-mentioned problems. These 15 min-Si/FeSi2 @C NPs and 30 min-Si/FeSi2 @C NPs show excellent Li+ storage capacity in the first cycle (2705.9/3039.1 mAh g-1 and 2645.9/2984.2 mAh g-1) with high Initial Coulombic Efficiency (ICE) of ∼89.0% and 88.7%. In-situ TEM characterization demonstrates that the carbon coating layer and inert FeSi2 phase enable a small volume variation, only ∼37.8%, revealing the effective volume expansion control effect, and generating thin SEI layers. Besides, the perfect structure of Si/FeSi2 @C NPs makes this material a great improvement in rate performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI