吸附
化学
活性炭
氧化还原
水溶液
内球面电子转移
碳纤维
无机化学
核化学
有机化学
材料科学
离子
复合数
复合材料
作者
Yanli Kong,Zhiyan Huang,Hangyu Chu,Yaqian Ma,Jie Ma,Yong Nie,Lei Ding,Zhonglin Chen,Jimin Shen
标识
DOI:10.1007/s11356-022-24876-8
摘要
In this study, a novel in situ iron-loaded activated carbon (AFPAC) was prepared by a FeSO4/K2FeO4 impregnation and oxidation combination two-step supported on activated carbon for enhanced removal of Cr(VI) from aqueous solutions. Cr(VI) removal efficiency greatly increased by AFPAC more than 70% than that of fresh activated carbon (AC), which is due to rich iron oxides formed in situ and the synergistic effect between iron oxides and activated carbon. Cr(VI) adsorption behaviors on AFPAC under different water quality parameters were investigated. The maximum monolayer adsorption capacities for Cr(VI) by AFPAC are as high as 26.24 mg/g, 28.65 mg/g, and 32.05 mg/g at 25 °C, 35 °C and 45 °C at pH 4, respectively. Density functional theory (DFT) results showed that the adsorption energy of K2Cr2O7 on the surface of FeOOH was - 2.52 eV, which was greater than that on the surface of bare AC, and more charge transfer occurred during the adsorption of K2Cr2O7 on the surface of FeOOH, greatly promoting the formation of Cr = O-Fe. Cr(VI) removal by AFPAC included electrostatic attraction, redox reaction, coordinate complexation, and co-precipitation. Cr(VI) adsorption process on AFPAC consisted of the three reaction steps: (1) AFPAC was fast protonation and Cr2O72- would electrostatically attract to the positively charged AFPAC surface. (2) Cr2O72- was reduced into Cr2O3 by the carbons bond to the oxygen functionalities on activated carbon and the redox reaction process of FeSO4 and K2FeO4. (3) The inner-sphere complexes were formed, and adsorbed on AFPAC by iron oxides and then co-precipitation.
科研通智能强力驱动
Strongly Powered by AbleSci AI