Rapid seismic damage state assessment of RC frames using machine learning methods

随机森林 脆弱性(计算) 机器学习 梯度升压 计算机科学 人工智能 计算机安全
作者
Haoyou Zhang,Xiaowei Cheng,Yi Li,Dianjin He,Xiuli Du
出处
期刊:Journal of building engineering [Elsevier]
卷期号:65: 105797-105797 被引量:48
标识
DOI:10.1016/j.jobe.2022.105797
摘要

A rapid seismic damage state assessment of individual building is essential for a region-scale risk and vulnerability assessment that requires significant manpower, time, and computational efforts. In this study, three machine learning (ML) algorithms that exhibited high predictive accuracy in previous studies, namely random forest (RF), extremely gradient boosting (XGB), and active machine learning (AL) were used to develop models for rapidly assessing the seismic damage states of reinforced concrete (RC) frames after an earthquake. Compared to RF and XGB, the active machine learning develops an efficient model with a small number of instances by interactively selecting the valuable instances for desired outputs. Using these aforementioned algorithms, three predictive models were developed, tested, and validated using a comprehensive dataset which included a total of 9900 data points. The dataset was developed according to a non-linear time history analysis involving a combination of 199 RC frames and 50 ground motions. The results indicated that active machine learning predicted the damage states of RC frames with an accuracy of 84% in the testing dataset, followed by the XGB algorithm with an accuracy of 80%. These predictive models were also validated using actual damaged buildings in the Taiwan earthquake. Seismic design intensity (SDI) and spectrum intensity (SI) were the most important input features in the damage states of RC frames, with a relative importance factor exceeding 50% for the two features. Constructed periods have a non-negligible influence on the damage states of RC frames when these differ for regional buildings. Finally, an interactive and user-friendly graphical user interface (GUI) platform was created to provide a rapid seismic damage state assessment of RC frames. This study represents a pioneering step toward the application of AL in damage state assessment of existing RC frames.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xx发布了新的文献求助10
刚刚
qiuxuan100完成签到,获得积分10
1秒前
曹艳龙完成签到 ,获得积分10
1秒前
呜啦啦完成签到,获得积分10
2秒前
粥粥完成签到,获得积分10
2秒前
3秒前
机智谷蕊发布了新的文献求助10
3秒前
在水一方应助wang采纳,获得10
4秒前
4秒前
在水一方应助lanshi1008采纳,获得10
4秒前
5秒前
代骜珺完成签到,获得积分10
5秒前
辣辣发布了新的文献求助10
5秒前
共享精神应助Angel采纳,获得10
5秒前
5秒前
星辰大海应助xx采纳,获得10
6秒前
YukiXu发布了新的文献求助10
7秒前
哈哈哈发布了新的文献求助10
8秒前
科研通AI6应助DONG采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
在水一方应助小胡同学采纳,获得10
9秒前
子车茗应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
成就凡双应助科研通管家采纳,获得10
9秒前
9秒前
浮游应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
脱羰甲酸发布了新的文献求助10
9秒前
打打应助科研通管家采纳,获得40
9秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
勤恳雅莉应助科研通管家采纳,获得30
10秒前
黄小小发布了新的文献求助30
10秒前
Orange应助科研通管家采纳,获得10
10秒前
子车茗应助科研通管家采纳,获得10
10秒前
维奈克拉应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588835
求助须知:如何正确求助?哪些是违规求助? 4671698
关于积分的说明 14789060
捐赠科研通 4626566
什么是DOI,文献DOI怎么找? 2531974
邀请新用户注册赠送积分活动 1500561
关于科研通互助平台的介绍 1468343