Rapid seismic damage state assessment of RC frames using machine learning methods

随机森林 脆弱性(计算) 机器学习 梯度升压 计算机科学 人工智能 计算机安全
作者
Haoyou Zhang,Xiaowei Cheng,Yi Li,Dianjin He,Xiuli Du
出处
期刊:Journal of building engineering [Elsevier]
卷期号:65: 105797-105797 被引量:30
标识
DOI:10.1016/j.jobe.2022.105797
摘要

A rapid seismic damage state assessment of individual building is essential for a region-scale risk and vulnerability assessment that requires significant manpower, time, and computational efforts. In this study, three machine learning (ML) algorithms that exhibited high predictive accuracy in previous studies, namely random forest (RF), extremely gradient boosting (XGB), and active machine learning (AL) were used to develop models for rapidly assessing the seismic damage states of reinforced concrete (RC) frames after an earthquake. Compared to RF and XGB, the active machine learning develops an efficient model with a small number of instances by interactively selecting the valuable instances for desired outputs. Using these aforementioned algorithms, three predictive models were developed, tested, and validated using a comprehensive dataset which included a total of 9900 data points. The dataset was developed according to a non-linear time history analysis involving a combination of 199 RC frames and 50 ground motions. The results indicated that active machine learning predicted the damage states of RC frames with an accuracy of 84% in the testing dataset, followed by the XGB algorithm with an accuracy of 80%. These predictive models were also validated using actual damaged buildings in the Taiwan earthquake. Seismic design intensity (SDI) and spectrum intensity (SI) were the most important input features in the damage states of RC frames, with a relative importance factor exceeding 50% for the two features. Constructed periods have a non-negligible influence on the damage states of RC frames when these differ for regional buildings. Finally, an interactive and user-friendly graphical user interface (GUI) platform was created to provide a rapid seismic damage state assessment of RC frames. This study represents a pioneering step toward the application of AL in damage state assessment of existing RC frames.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
侦察兵发布了新的文献求助10
刚刚
JamesPei应助科研小小小白采纳,获得10
刚刚
刚刚
yaqin@9909完成签到,获得积分10
刚刚
嗨JL完成签到,获得积分10
刚刚
帅玉玉发布了新的文献求助10
刚刚
鳗鱼冰薇完成签到 ,获得积分10
2秒前
tanjianxin发布了新的文献求助10
2秒前
3秒前
霸王龙完成签到,获得积分10
3秒前
3秒前
3秒前
细心映寒发布了新的文献求助10
3秒前
哈哈发布了新的文献求助10
4秒前
4秒前
安静的雨完成签到,获得积分10
4秒前
5秒前
5秒前
liu完成签到,获得积分10
5秒前
5秒前
神麒小雪完成签到,获得积分10
5秒前
苹果酸奶发布了新的文献求助10
5秒前
6秒前
粥粥完成签到 ,获得积分10
6秒前
小离发布了新的文献求助30
7秒前
8秒前
nk完成签到 ,获得积分10
8秒前
kkk完成签到 ,获得积分10
8秒前
韭菜发布了新的文献求助10
8秒前
KSGGS发布了新的文献求助30
9秒前
李爱国应助tanjianxin采纳,获得10
9秒前
9秒前
9秒前
柚子发布了新的文献求助10
10秒前
10秒前
10秒前
SciGPT应助小可采纳,获得10
10秒前
11秒前
11秒前
Akim应助若狂采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759