Rapid seismic damage state assessment of RC frames using machine learning methods

随机森林 脆弱性(计算) 机器学习 梯度升压 计算机科学 人工智能 计算机安全
作者
Haoyou Zhang,Xiaowei Cheng,Yi Li,Dianjin He,Xiuli Du
出处
期刊:Journal of building engineering [Elsevier]
卷期号:65: 105797-105797 被引量:48
标识
DOI:10.1016/j.jobe.2022.105797
摘要

A rapid seismic damage state assessment of individual building is essential for a region-scale risk and vulnerability assessment that requires significant manpower, time, and computational efforts. In this study, three machine learning (ML) algorithms that exhibited high predictive accuracy in previous studies, namely random forest (RF), extremely gradient boosting (XGB), and active machine learning (AL) were used to develop models for rapidly assessing the seismic damage states of reinforced concrete (RC) frames after an earthquake. Compared to RF and XGB, the active machine learning develops an efficient model with a small number of instances by interactively selecting the valuable instances for desired outputs. Using these aforementioned algorithms, three predictive models were developed, tested, and validated using a comprehensive dataset which included a total of 9900 data points. The dataset was developed according to a non-linear time history analysis involving a combination of 199 RC frames and 50 ground motions. The results indicated that active machine learning predicted the damage states of RC frames with an accuracy of 84% in the testing dataset, followed by the XGB algorithm with an accuracy of 80%. These predictive models were also validated using actual damaged buildings in the Taiwan earthquake. Seismic design intensity (SDI) and spectrum intensity (SI) were the most important input features in the damage states of RC frames, with a relative importance factor exceeding 50% for the two features. Constructed periods have a non-negligible influence on the damage states of RC frames when these differ for regional buildings. Finally, an interactive and user-friendly graphical user interface (GUI) platform was created to provide a rapid seismic damage state assessment of RC frames. This study represents a pioneering step toward the application of AL in damage state assessment of existing RC frames.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麦子发布了新的文献求助10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
NexusExplorer应助伏坎采纳,获得10
2秒前
哇嘞完成签到 ,获得积分10
3秒前
传奇3应助ZRBY采纳,获得10
3秒前
CodeCraft应助loewy采纳,获得10
3秒前
3秒前
3秒前
4秒前
LZHANK1NG完成签到,获得积分10
4秒前
Silverexile完成签到,获得积分10
5秒前
5秒前
5秒前
一颗栗子完成签到,获得积分10
6秒前
笨笨紫完成签到,获得积分10
6秒前
整齐凌青应助天真青旋采纳,获得10
6秒前
健壮念寒完成签到,获得积分20
7秒前
领导范儿应助gj采纳,获得20
7秒前
sxx完成签到 ,获得积分10
7秒前
跳跃寻绿发布了新的文献求助10
8秒前
李健应助科研小白采纳,获得10
8秒前
东方诩发布了新的文献求助10
8秒前
10秒前
dove_26发布了新的文献求助10
10秒前
punch发布了新的文献求助10
11秒前
11秒前
wangnanjyy123完成签到,获得积分10
11秒前
外向的宛白完成签到,获得积分10
12秒前
科研通AI2S应助张子怡采纳,获得10
13秒前
14秒前
靓丽的耳机完成签到,获得积分10
14秒前
WYH发布了新的文献求助10
14秒前
隐形曼青应助我爱看文献采纳,获得10
16秒前
执着的过客完成签到,获得积分10
17秒前
彬彬应助无奈夏瑶采纳,获得10
17秒前
KON发布了新的文献求助10
17秒前
科研通AI6应助wangnanjyy123采纳,获得10
20秒前
20秒前
zino发布了新的文献求助20
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420235
求助须知:如何正确求助?哪些是违规求助? 4535334
关于积分的说明 14149695
捐赠科研通 4452346
什么是DOI,文献DOI怎么找? 2442137
邀请新用户注册赠送积分活动 1433646
关于科研通互助平台的介绍 1410931