Rapid seismic damage state assessment of RC frames using machine learning methods

随机森林 脆弱性(计算) 机器学习 梯度升压 计算机科学 人工智能 计算机安全
作者
Haoyou Zhang,Xiaowei Cheng,Yi Li,Dianjin He,Xiuli Du
出处
期刊:Journal of building engineering [Elsevier]
卷期号:65: 105797-105797 被引量:30
标识
DOI:10.1016/j.jobe.2022.105797
摘要

A rapid seismic damage state assessment of individual building is essential for a region-scale risk and vulnerability assessment that requires significant manpower, time, and computational efforts. In this study, three machine learning (ML) algorithms that exhibited high predictive accuracy in previous studies, namely random forest (RF), extremely gradient boosting (XGB), and active machine learning (AL) were used to develop models for rapidly assessing the seismic damage states of reinforced concrete (RC) frames after an earthquake. Compared to RF and XGB, the active machine learning develops an efficient model with a small number of instances by interactively selecting the valuable instances for desired outputs. Using these aforementioned algorithms, three predictive models were developed, tested, and validated using a comprehensive dataset which included a total of 9900 data points. The dataset was developed according to a non-linear time history analysis involving a combination of 199 RC frames and 50 ground motions. The results indicated that active machine learning predicted the damage states of RC frames with an accuracy of 84% in the testing dataset, followed by the XGB algorithm with an accuracy of 80%. These predictive models were also validated using actual damaged buildings in the Taiwan earthquake. Seismic design intensity (SDI) and spectrum intensity (SI) were the most important input features in the damage states of RC frames, with a relative importance factor exceeding 50% for the two features. Constructed periods have a non-negligible influence on the damage states of RC frames when these differ for regional buildings. Finally, an interactive and user-friendly graphical user interface (GUI) platform was created to provide a rapid seismic damage state assessment of RC frames. This study represents a pioneering step toward the application of AL in damage state assessment of existing RC frames.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助myn1990采纳,获得10
刚刚
jihaowen发布了新的文献求助10
1秒前
Ava应助LIXI采纳,获得10
1秒前
1秒前
2秒前
Daitoue发布了新的文献求助10
2秒前
轻松的半雪完成签到,获得积分10
3秒前
闪闪的以山完成签到 ,获得积分10
3秒前
zzz完成签到 ,获得积分10
4秒前
4秒前
Reese完成签到,获得积分10
6秒前
凶狠的冬天完成签到,获得积分10
6秒前
taiyuan完成签到,获得积分10
6秒前
小二郎应助义气的睫毛膏采纳,获得10
6秒前
alan完成签到,获得积分10
6秒前
SShi发布了新的文献求助10
7秒前
riccixuu完成签到 ,获得积分10
7秒前
xin发布了新的文献求助10
8秒前
8秒前
sqrt138发布了新的文献求助10
10秒前
健忘不言完成签到,获得积分10
10秒前
Ava应助着急的听南采纳,获得10
11秒前
义气绿柳完成签到,获得积分10
12秒前
开心元霜完成签到,获得积分10
12秒前
12秒前
LIXI完成签到,获得积分20
12秒前
12秒前
搜集达人应助小吴采纳,获得10
13秒前
大力黑米完成签到 ,获得积分10
13秒前
15秒前
义气绿柳发布了新的文献求助10
15秒前
搞怪的芮发布了新的文献求助10
15秒前
明亮菀完成签到,获得积分10
16秒前
Zl完成签到,获得积分10
16秒前
xuzhiwei完成签到,获得积分10
17秒前
17秒前
加湿器发布了新的文献求助10
17秒前
囧囧完成签到,获得积分0
17秒前
18秒前
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312036
求助须知:如何正确求助?哪些是违规求助? 2944707
关于积分的说明 8521005
捐赠科研通 2620360
什么是DOI,文献DOI怎么找? 1432797
科研通“疑难数据库(出版商)”最低求助积分说明 664762
邀请新用户注册赠送积分活动 650092