Rapid seismic damage state assessment of RC frames using machine learning methods

随机森林 脆弱性(计算) 机器学习 梯度升压 计算机科学 人工智能 计算机安全
作者
Haoyou Zhang,Xiaowei Cheng,Yi Li,Dianjin He,Xiuli Du
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:65: 105797-105797 被引量:41
标识
DOI:10.1016/j.jobe.2022.105797
摘要

A rapid seismic damage state assessment of individual building is essential for a region-scale risk and vulnerability assessment that requires significant manpower, time, and computational efforts. In this study, three machine learning (ML) algorithms that exhibited high predictive accuracy in previous studies, namely random forest (RF), extremely gradient boosting (XGB), and active machine learning (AL) were used to develop models for rapidly assessing the seismic damage states of reinforced concrete (RC) frames after an earthquake. Compared to RF and XGB, the active machine learning develops an efficient model with a small number of instances by interactively selecting the valuable instances for desired outputs. Using these aforementioned algorithms, three predictive models were developed, tested, and validated using a comprehensive dataset which included a total of 9900 data points. The dataset was developed according to a non-linear time history analysis involving a combination of 199 RC frames and 50 ground motions. The results indicated that active machine learning predicted the damage states of RC frames with an accuracy of 84% in the testing dataset, followed by the XGB algorithm with an accuracy of 80%. These predictive models were also validated using actual damaged buildings in the Taiwan earthquake. Seismic design intensity (SDI) and spectrum intensity (SI) were the most important input features in the damage states of RC frames, with a relative importance factor exceeding 50% for the two features. Constructed periods have a non-negligible influence on the damage states of RC frames when these differ for regional buildings. Finally, an interactive and user-friendly graphical user interface (GUI) platform was created to provide a rapid seismic damage state assessment of RC frames. This study represents a pioneering step toward the application of AL in damage state assessment of existing RC frames.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
王hf发布了新的文献求助10
2秒前
科研通AI5应助小糖人采纳,获得10
3秒前
JamesPei应助冷酷的风华采纳,获得10
3秒前
丘比特应助hbc采纳,获得10
3秒前
钱来完成签到,获得积分10
3秒前
满意寻绿完成签到,获得积分20
4秒前
思源应助超级的抽屉采纳,获得10
4秒前
dtoakm完成签到,获得积分20
4秒前
fallingstar发布了新的文献求助10
4秒前
4秒前
飞在夏夜的猫完成签到,获得积分10
5秒前
5秒前
王抗抗完成签到 ,获得积分10
5秒前
我陈雯雯实名上网完成签到,获得积分10
6秒前
6秒前
6秒前
詩翰发布了新的文献求助10
6秒前
6秒前
kkkk完成签到 ,获得积分10
6秒前
6秒前
调皮的沛萍完成签到,获得积分20
6秒前
Charlse_Su发布了新的文献求助10
7秒前
耍酷的山灵完成签到,获得积分10
7秒前
何止完成签到,获得积分10
7秒前
7秒前
9秒前
9秒前
小二郎应助yiyi采纳,获得10
9秒前
hhan发布了新的文献求助10
9秒前
院士徐若木完成签到,获得积分10
9秒前
10秒前
炽源发布了新的文献求助10
10秒前
JIANJUNZHOU完成签到,获得积分10
11秒前
何止发布了新的文献求助10
11秒前
徐凤年完成签到,获得积分10
12秒前
浪费发布了新的文献求助10
12秒前
14秒前
conghuiqu发布了新的文献求助10
14秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842227
求助须知:如何正确求助?哪些是违规求助? 3384336
关于积分的说明 10534304
捐赠科研通 3104803
什么是DOI,文献DOI怎么找? 1709801
邀请新用户注册赠送积分活动 823377
科研通“疑难数据库(出版商)”最低求助积分说明 774048