亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Rapid seismic damage state assessment of RC frames using machine learning methods

随机森林 脆弱性(计算) 机器学习 梯度升压 计算机科学 人工智能 计算机安全
作者
Haoyou Zhang,Xiaowei Cheng,Yi Li,Dianjin He,Xiuli Du
出处
期刊:Journal of building engineering [Elsevier]
卷期号:65: 105797-105797 被引量:48
标识
DOI:10.1016/j.jobe.2022.105797
摘要

A rapid seismic damage state assessment of individual building is essential for a region-scale risk and vulnerability assessment that requires significant manpower, time, and computational efforts. In this study, three machine learning (ML) algorithms that exhibited high predictive accuracy in previous studies, namely random forest (RF), extremely gradient boosting (XGB), and active machine learning (AL) were used to develop models for rapidly assessing the seismic damage states of reinforced concrete (RC) frames after an earthquake. Compared to RF and XGB, the active machine learning develops an efficient model with a small number of instances by interactively selecting the valuable instances for desired outputs. Using these aforementioned algorithms, three predictive models were developed, tested, and validated using a comprehensive dataset which included a total of 9900 data points. The dataset was developed according to a non-linear time history analysis involving a combination of 199 RC frames and 50 ground motions. The results indicated that active machine learning predicted the damage states of RC frames with an accuracy of 84% in the testing dataset, followed by the XGB algorithm with an accuracy of 80%. These predictive models were also validated using actual damaged buildings in the Taiwan earthquake. Seismic design intensity (SDI) and spectrum intensity (SI) were the most important input features in the damage states of RC frames, with a relative importance factor exceeding 50% for the two features. Constructed periods have a non-negligible influence on the damage states of RC frames when these differ for regional buildings. Finally, an interactive and user-friendly graphical user interface (GUI) platform was created to provide a rapid seismic damage state assessment of RC frames. This study represents a pioneering step toward the application of AL in damage state assessment of existing RC frames.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CScs25发布了新的文献求助10
3秒前
懒大王完成签到,获得积分10
5秒前
9秒前
14秒前
shinn发布了新的文献求助10
16秒前
17秒前
18秒前
老婶子发布了新的文献求助10
20秒前
充电宝应助shinn采纳,获得10
20秒前
友好谷蓝发布了新的文献求助10
24秒前
27秒前
铭铭完成签到 ,获得积分10
27秒前
友好谷蓝完成签到,获得积分10
31秒前
31秒前
33秒前
36秒前
shinn发布了新的文献求助10
43秒前
无花果应助Omni采纳,获得10
44秒前
48秒前
49秒前
张元东完成签到 ,获得积分10
49秒前
MUYI发布了新的文献求助10
54秒前
科研通AI6.1应助taysun采纳,获得10
58秒前
快乐芷荷完成签到 ,获得积分10
1分钟前
炙热的南霜完成签到,获得积分10
1分钟前
无花果应助耕云钓月采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Tanya完成签到 ,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
MUYI完成签到,获得积分10
1分钟前
taysun发布了新的文献求助10
1分钟前
Lin完成签到,获得积分10
1分钟前
CodeCraft应助MUYI采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772446
求助须知:如何正确求助?哪些是违规求助? 5598683
关于积分的说明 15429642
捐赠科研通 4905409
什么是DOI,文献DOI怎么找? 2639381
邀请新用户注册赠送积分活动 1587308
关于科研通互助平台的介绍 1542165