Rapid seismic damage state assessment of RC frames using machine learning methods

随机森林 脆弱性(计算) 机器学习 梯度升压 计算机科学 人工智能 计算机安全
作者
Haoyou Zhang,Xiaowei Cheng,Yi Li,Dianjin He,Xiuli Du
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:65: 105797-105797 被引量:41
标识
DOI:10.1016/j.jobe.2022.105797
摘要

A rapid seismic damage state assessment of individual building is essential for a region-scale risk and vulnerability assessment that requires significant manpower, time, and computational efforts. In this study, three machine learning (ML) algorithms that exhibited high predictive accuracy in previous studies, namely random forest (RF), extremely gradient boosting (XGB), and active machine learning (AL) were used to develop models for rapidly assessing the seismic damage states of reinforced concrete (RC) frames after an earthquake. Compared to RF and XGB, the active machine learning develops an efficient model with a small number of instances by interactively selecting the valuable instances for desired outputs. Using these aforementioned algorithms, three predictive models were developed, tested, and validated using a comprehensive dataset which included a total of 9900 data points. The dataset was developed according to a non-linear time history analysis involving a combination of 199 RC frames and 50 ground motions. The results indicated that active machine learning predicted the damage states of RC frames with an accuracy of 84% in the testing dataset, followed by the XGB algorithm with an accuracy of 80%. These predictive models were also validated using actual damaged buildings in the Taiwan earthquake. Seismic design intensity (SDI) and spectrum intensity (SI) were the most important input features in the damage states of RC frames, with a relative importance factor exceeding 50% for the two features. Constructed periods have a non-negligible influence on the damage states of RC frames when these differ for regional buildings. Finally, an interactive and user-friendly graphical user interface (GUI) platform was created to provide a rapid seismic damage state assessment of RC frames. This study represents a pioneering step toward the application of AL in damage state assessment of existing RC frames.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
存在完成签到,获得积分10
2秒前
彭于晏应助ljkshr采纳,获得10
4秒前
maybe发布了新的文献求助10
5秒前
banana完成签到,获得积分10
7秒前
9秒前
11秒前
yue完成签到,获得积分20
11秒前
月亮快打烊吖完成签到 ,获得积分10
13秒前
15秒前
pu发布了新的文献求助10
15秒前
spyspy发布了新的文献求助20
17秒前
17秒前
呼呼完成签到 ,获得积分10
20秒前
20秒前
杨秀玲发布了新的文献求助10
21秒前
21秒前
leslie花花发布了新的文献求助10
21秒前
22秒前
鹏虫虫完成签到 ,获得积分10
23秒前
24秒前
可爱的函函应助牛牛采纳,获得10
26秒前
能干的茗发布了新的文献求助10
27秒前
欧阳正义发布了新的文献求助10
28秒前
28秒前
清脆南蕾发布了新的文献求助10
29秒前
852应助tomorrow9采纳,获得10
30秒前
凉薄少年应助乐观碧彤采纳,获得10
30秒前
李爱国应助夔kk采纳,获得10
31秒前
凉薄少年应助刘先生采纳,获得10
32秒前
xxttt完成签到,获得积分10
38秒前
40秒前
xunxunmimi完成签到,获得积分10
41秒前
天天快乐应助明明明采纳,获得30
41秒前
啦啦啦完成签到,获得积分10
42秒前
谢逸轩发布了新的文献求助10
43秒前
英姑应助行路人采纳,获得20
44秒前
jiangwei完成签到 ,获得积分10
44秒前
完美世界应助涵泽采纳,获得10
46秒前
49秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967386
求助须知:如何正确求助?哪些是违规求助? 3512667
关于积分的说明 11164479
捐赠科研通 3247536
什么是DOI,文献DOI怎么找? 1793911
邀请新用户注册赠送积分活动 874758
科研通“疑难数据库(出版商)”最低求助积分说明 804498