Reinforcement Learning-Based Prescribed Performance Motion Control of Pneumatic Muscle Actuated Robotic Arms With Measurement Noises

控制理论(社会学) 工作区 计算机科学 稳健性(进化) 强化学习 控制工程 机器人 控制器(灌溉) 工程类 控制(管理) 人工智能 农学 生物化学 生物 基因 化学
作者
Gendi Liu,Ning Sun,Tong Yang,Yongchun Fang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (3): 1801-1812 被引量:19
标识
DOI:10.1109/tsmc.2022.3207575
摘要

Featured with high power density, excellent flexibility, shock absorption capacity, etc., pneumatic muscles (PMs) promote the development of exoskeleton robots and rehabilitation equipment. However, the complex nonlinearities of PMs limit efficiency optimization in closed-loop control, while the force-displacement coupling, soft materials, deficient workspace, etc., make it more difficult to simultaneously increase motion speeds and ensure the safety of multiple PM-actuated (PMA) robots. Although force sensors can currently be replaced by applying state estimation techniques, the amplification effects of measurement noises still compromise control accuracy and stability in practice. To this end, this article proposes a reinforcement learning-based robust motion control method with the prescribed performance, which achieves efficient and satisfactory tracking control for PMA robotic arms. In particular, by elaborately incorporating an integral term, a robust generalized proportional integral observer is used to eliminate measurement noises. Meanwhile, by using an actor–critic network to optimize control performance, an error-transformation-based continuous controller is designed to guarantee the uniformly ultimately boundedness of tracking errors. Compared with most existing methods, this article provides the first solution to restrict the entire transient and steady-state performance of PMA robotic arms, improve the noise suppression capability, and optimize the control efficiency simultaneously. Finally, complete stability analysis based on Lyapunov techniques is provided, and several groups of hardware experiments demonstrate the practicability and robustness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
6秒前
7秒前
lhzm8290发布了新的文献求助10
8秒前
小山隹发布了新的文献求助10
8秒前
科研通AI5应助有魅力冰岚采纳,获得30
9秒前
丁真先生发布了新的文献求助10
11秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
猪猪hero应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
13秒前
猪猪hero应助科研通管家采纳,获得10
13秒前
猪猪hero应助科研通管家采纳,获得10
13秒前
慕青应助lkf采纳,获得10
13秒前
猪猪hero应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
13秒前
江璃完成签到,获得积分10
14秒前
14秒前
14秒前
Akim应助土豪的飞荷采纳,获得10
16秒前
16秒前
失眠惊蛰完成签到,获得积分10
20秒前
22秒前
22秒前
23秒前
Sjingjia完成签到,获得积分10
24秒前
NexusExplorer应助追寻桐采纳,获得10
25秒前
26秒前
YOLK97完成签到,获得积分10
27秒前
27秒前
小李完成签到,获得积分20
27秒前
Estella发布了新的文献求助10
29秒前
阿秋秋秋发布了新的文献求助10
30秒前
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Illustrated Veterinary Anatomical Nomenclature 2000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770207
求助须知:如何正确求助?哪些是违规求助? 3315298
关于积分的说明 10175159
捐赠科研通 3030309
什么是DOI,文献DOI怎么找? 1662801
邀请新用户注册赠送积分活动 795099
科研通“疑难数据库(出版商)”最低求助积分说明 756560