Exploring deep feature-blending capabilities to assist glaucoma screening

分割 计算机科学 青光眼 人工智能 特征(语言学) 眼底(子宫) 视盘 深度学习 模式识别(心理学) 计算机视觉 医学 眼科 语言学 哲学
作者
Adnan Haider,Muhammad Arsalan,Chanhum Park,Haseeb Sultan,Kang Ryoung Park
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:133: 109918-109918 被引量:20
标识
DOI:10.1016/j.asoc.2022.109918
摘要

Over the last three decades, computer vision has had a vital role in the healthcare sector by providing soft computing-based robust and intelligent diagnostic solutions. Glaucoma is a critical ophthalmic disease that can trigger irreversible loss of vision. The number of patients with glaucoma is increasing dramatically worldwide. Manual ophthalmic assessment of glaucoma detection is a tedious, error-prone, time-consuming, and subjective task. Therefore, computer-assisted automatic glaucoma diagnosis methods are required to strengthen existing diagnostic methods with their robust performance. Optic disc (OD) and optic cup (OC) segmentation have a key role in glaucoma detection. Accurate segmentation of the OD and OC provides valuable computational and clinical details that can substantially assist in the glaucoma screening process. Retinal fundus images have extensive variations in terms of size, shape, pixel intensity values, and background effects that make segmentation challenging. To mitigate these challenges, we developed two novel networks for accurate OD and OC segmentation. An efficient shallow segmentation network (ESS-Net) is the base network whereas a feature-blending-based shallow segmentation network (FBSS-Net) is the final network of this work. ESS-Net is a shallow architecture with a maximum-depth semantic preservation block for accurate segmentation, while FBSS-Net uses internal and external feature blending to improve overall segmentation performance. To confirm their effectiveness, we evaluated both networks using four publicly available datasets; REFUGE, Drions-DB, Drishti-GS, and Rim-One-r3. The proposed methods exhibited excellent segmentation performance, requiring a small number of trainable parameters (3.02 million parameters).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘟嘟发布了新的文献求助10
1秒前
陈开山完成签到,获得积分10
1秒前
梨理栗发布了新的文献求助10
1秒前
1秒前
alex发布了新的文献求助10
2秒前
2秒前
LaTeXer应助隐形夕阳采纳,获得50
2秒前
lw发布了新的文献求助10
3秒前
3秒前
英姑应助Janusfaces采纳,获得10
3秒前
3秒前
plasmid完成签到,获得积分10
4秒前
Ava应助咕噜咕噜咕嘟咕嘟采纳,获得10
4秒前
5秒前
SHAO应助一块司康饼采纳,获得100
5秒前
嗯哼发布了新的文献求助10
5秒前
Rondab应助mariawang采纳,获得10
7秒前
MchemG应助酷酷的紫南采纳,获得30
8秒前
1111发布了新的文献求助10
8秒前
8秒前
continue发布了新的文献求助10
9秒前
zhangtong发布了新的文献求助10
9秒前
嘟嘟完成签到,获得积分10
9秒前
wdy111应助葡萄味的果茶采纳,获得20
10秒前
悦耳代真完成签到,获得积分10
10秒前
ysx完成签到,获得积分10
10秒前
11秒前
Orange应助淡淡夕阳采纳,获得10
11秒前
11秒前
yar重新开启了yl文献应助
12秒前
13秒前
13秒前
zhoup完成签到,获得积分20
14秒前
宝海青完成签到,获得积分10
14秒前
李健应助缓慢的含双采纳,获得10
14秒前
yqb完成签到,获得积分10
15秒前
上官若男应助笑点低的不采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
qifunongsuo1213完成签到,获得积分10
17秒前
chenzixin发布了新的文献求助10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988732
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252281
捐赠科研通 3269732
什么是DOI,文献DOI怎么找? 1804764
邀请新用户注册赠送积分活动 881869
科研通“疑难数据库(出版商)”最低求助积分说明 809021