Exploring deep feature-blending capabilities to assist glaucoma screening

分割 计算机科学 青光眼 人工智能 特征(语言学) 眼底(子宫) 视盘 深度学习 模式识别(心理学) 计算机视觉 医学 眼科 语言学 哲学
作者
Adnan Haider,Muhammad Arsalan,Chanhum Park,Haseeb Sultan,Kang Ryoung Park
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:133: 109918-109918 被引量:20
标识
DOI:10.1016/j.asoc.2022.109918
摘要

Over the last three decades, computer vision has had a vital role in the healthcare sector by providing soft computing-based robust and intelligent diagnostic solutions. Glaucoma is a critical ophthalmic disease that can trigger irreversible loss of vision. The number of patients with glaucoma is increasing dramatically worldwide. Manual ophthalmic assessment of glaucoma detection is a tedious, error-prone, time-consuming, and subjective task. Therefore, computer-assisted automatic glaucoma diagnosis methods are required to strengthen existing diagnostic methods with their robust performance. Optic disc (OD) and optic cup (OC) segmentation have a key role in glaucoma detection. Accurate segmentation of the OD and OC provides valuable computational and clinical details that can substantially assist in the glaucoma screening process. Retinal fundus images have extensive variations in terms of size, shape, pixel intensity values, and background effects that make segmentation challenging. To mitigate these challenges, we developed two novel networks for accurate OD and OC segmentation. An efficient shallow segmentation network (ESS-Net) is the base network whereas a feature-blending-based shallow segmentation network (FBSS-Net) is the final network of this work. ESS-Net is a shallow architecture with a maximum-depth semantic preservation block for accurate segmentation, while FBSS-Net uses internal and external feature blending to improve overall segmentation performance. To confirm their effectiveness, we evaluated both networks using four publicly available datasets; REFUGE, Drions-DB, Drishti-GS, and Rim-One-r3. The proposed methods exhibited excellent segmentation performance, requiring a small number of trainable parameters (3.02 million parameters).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大椒完成签到 ,获得积分10
刚刚
3秒前
5秒前
wisdom完成签到,获得积分10
5秒前
slayers发布了新的文献求助30
8秒前
9秒前
e746700020完成签到,获得积分10
10秒前
高兴尔冬完成签到,获得积分10
10秒前
李爱国应助不安的秋白采纳,获得10
12秒前
忧伤的步美完成签到,获得积分10
17秒前
小西完成签到 ,获得积分10
18秒前
郝老头完成签到,获得积分10
19秒前
13313完成签到,获得积分10
20秒前
su完成签到 ,获得积分10
21秒前
24秒前
29秒前
量子星尘发布了新的文献求助10
29秒前
slayers完成签到 ,获得积分10
29秒前
31秒前
知犯何逆完成签到,获得积分10
33秒前
Krsky完成签到,获得积分10
35秒前
ding应助不安的秋白采纳,获得10
36秒前
37秒前
39秒前
HHHAN发布了新的文献求助10
43秒前
威武的沂完成签到,获得积分10
48秒前
50秒前
51秒前
53秒前
笨笨青筠完成签到 ,获得积分10
56秒前
mengmenglv完成签到 ,获得积分0
56秒前
Tonald Yang完成签到 ,获得积分20
59秒前
1分钟前
落后的怀梦完成签到 ,获得积分10
1分钟前
陈坤完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
斯文败类应助zgx采纳,获得10
1分钟前
默默完成签到 ,获得积分10
1分钟前
KY Mr.WANG完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022