Contrast-Enhanced Ultrasound with Deep Learning with Attention Mechanisms for Predicting Microvascular Invasion in Single Hepatocellular Carcinoma

医学 列线图 超声造影 肝细胞癌 放射科 队列 超声波 多元分析 内科学 多元统计 肿瘤科 机器学习 计算机科学
作者
Xiachuan Qin,J. Zhu,Zhengzheng Tu,Qianqing Ma,Jin Tang,Chaoxue Zhang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30: S73-S80 被引量:16
标识
DOI:10.1016/j.acra.2022.12.005
摘要

Prediction of microvascular invasion (MVI) status of hepatocellular carcinoma (HCC) holds clinical significance for decision-making regarding the treatment strategy and evaluation of patient prognosis. We developed a deep learning (DL) model based on contrast-enhanced ultrasound (CEUS) to predict MVI of HCC.We retrospectively analyzed the data for single primary HCCs that were evaluated with CEUS 1 week before surgical resection from December 2014 to February 2022. The study population was divided into training (n = 198) and test (n = 54) cohorts. In this study, three DL models (Resnet50, Resnet50+BAM, Resnet50+SE) were trained using the training cohort and tested in the test cohort. Tumor characteristics were also evaluated by radiologists, and multivariate regression analysis was performed to determine independent indicators for the development of predictive nomogram models. The performance of the three DL models was compared to that of the MVI prediction model based on radiologist evaluations.The best-performing model, ResNet50+SE model achieved the ROC of 0.856, accuracy of 77.2, specificity of 93.9%, and sensitivity of 52.4% in the test group. The MVI prediction model based on a combination of three independent predictors showed a C-index of 0.729, accuracy of 69.4, specificity of 73.8%, and sensitivity of 62%.The DL algorithm can accurately predict MVI of HCC on the basis of CEUS images, to help identify high-risk patients for the assist treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
dild完成签到,获得积分10
2秒前
清枫发布了新的文献求助10
6秒前
李想完成签到,获得积分10
6秒前
彭于晏应助不喝牛奶的猫采纳,获得10
7秒前
7秒前
之星君完成签到,获得积分10
9秒前
11秒前
12秒前
浮游应助彪壮的雪晴采纳,获得10
13秒前
易晨曦完成签到 ,获得积分10
14秒前
14秒前
15秒前
打打应助endlessloop采纳,获得10
15秒前
无辜南晴发布了新的文献求助10
16秒前
17秒前
风息发布了新的文献求助10
18秒前
无情灯泡发布了新的文献求助10
18秒前
杜不腾发布了新的文献求助10
19秒前
念白发布了新的文献求助10
21秒前
科研通AI5应助jeesy采纳,获得10
23秒前
23秒前
23秒前
23秒前
谦让的博完成签到,获得积分10
23秒前
25秒前
APTACH完成签到,获得积分10
25秒前
25秒前
英吉利25发布了新的文献求助10
26秒前
27秒前
juphen2完成签到,获得积分10
30秒前
李健的小迷弟应助念白采纳,获得10
32秒前
爆米花应助大方研究生采纳,获得10
35秒前
酷波er应助清枫采纳,获得10
36秒前
38秒前
新月完成签到 ,获得积分10
38秒前
完美世界应助小冯采纳,获得10
38秒前
39秒前
杨怂怂完成签到 ,获得积分10
40秒前
云淡风清完成签到 ,获得积分10
40秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5217962
求助须知:如何正确求助?哪些是违规求助? 4392247
关于积分的说明 13674920
捐赠科研通 4254581
什么是DOI,文献DOI怎么找? 2334523
邀请新用户注册赠送积分活动 1332187
关于科研通互助平台的介绍 1286219