Contrast-Enhanced Ultrasound with Deep Learning with Attention Mechanisms for Predicting Microvascular Invasion in Single Hepatocellular Carcinoma

医学 列线图 超声造影 肝细胞癌 放射科 队列 超声波 多元分析 内科学 多元统计 肿瘤科 机器学习 计算机科学
作者
Xiachuan Qin,J. Zhu,Zhengzheng Tu,Qianqing Ma,Jin Tang,Chaoxue Zhang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30: S73-S80 被引量:16
标识
DOI:10.1016/j.acra.2022.12.005
摘要

Prediction of microvascular invasion (MVI) status of hepatocellular carcinoma (HCC) holds clinical significance for decision-making regarding the treatment strategy and evaluation of patient prognosis. We developed a deep learning (DL) model based on contrast-enhanced ultrasound (CEUS) to predict MVI of HCC.We retrospectively analyzed the data for single primary HCCs that were evaluated with CEUS 1 week before surgical resection from December 2014 to February 2022. The study population was divided into training (n = 198) and test (n = 54) cohorts. In this study, three DL models (Resnet50, Resnet50+BAM, Resnet50+SE) were trained using the training cohort and tested in the test cohort. Tumor characteristics were also evaluated by radiologists, and multivariate regression analysis was performed to determine independent indicators for the development of predictive nomogram models. The performance of the three DL models was compared to that of the MVI prediction model based on radiologist evaluations.The best-performing model, ResNet50+SE model achieved the ROC of 0.856, accuracy of 77.2, specificity of 93.9%, and sensitivity of 52.4% in the test group. The MVI prediction model based on a combination of three independent predictors showed a C-index of 0.729, accuracy of 69.4, specificity of 73.8%, and sensitivity of 62%.The DL algorithm can accurately predict MVI of HCC on the basis of CEUS images, to help identify high-risk patients for the assist treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
table发布了新的文献求助10
刚刚
打打应助纪诗筠采纳,获得10
刚刚
小不溜完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
CipherSage应助文静采纳,获得10
3秒前
3秒前
蔡雨岑发布了新的文献求助10
3秒前
4秒前
nh3完成签到,获得积分20
5秒前
NexusExplorer应助怕黑的樱采纳,获得10
5秒前
高高的冥茗完成签到,获得积分10
5秒前
星辰大海应助周易采纳,获得10
5秒前
科研通AI2S应助庾稀采纳,获得10
6秒前
唐古拉发布了新的文献求助10
7秒前
lucky发布了新的文献求助10
7秒前
8秒前
机智的映之完成签到,获得积分10
8秒前
惊蛰完成签到 ,获得积分10
9秒前
斯文败类应助1木木采纳,获得10
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
JamesPei应助蔡雨岑采纳,获得10
11秒前
wjrakej发布了新的文献求助10
11秒前
夏则完成签到,获得积分10
12秒前
13秒前
猪猪女孩一路硕博完成签到,获得积分10
13秒前
13秒前
无极微光应助LL采纳,获得20
13秒前
13秒前
文静发布了新的文献求助10
13秒前
动听夏波发布了新的文献求助30
13秒前
科研通AI6应助wyblobin采纳,获得10
13秒前
在水一方应助光亮靖琪采纳,获得10
14秒前
十一发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4897294
求助须知:如何正确求助?哪些是违规求助? 4178485
关于积分的说明 12971563
捐赠科研通 3942126
什么是DOI,文献DOI怎么找? 2162467
邀请新用户注册赠送积分活动 1181014
关于科研通互助平台的介绍 1086585