医学
列线图
超声造影
肝细胞癌
放射科
队列
超声波
多元分析
内科学
多元统计
肿瘤科
机器学习
计算机科学
作者
Xiachuan Qin,J. Zhu,Zhengzheng Tu,Qianqing Ma,Jin Tang,Chaoxue Zhang
标识
DOI:10.1016/j.acra.2022.12.005
摘要
Prediction of microvascular invasion (MVI) status of hepatocellular carcinoma (HCC) holds clinical significance for decision-making regarding the treatment strategy and evaluation of patient prognosis. We developed a deep learning (DL) model based on contrast-enhanced ultrasound (CEUS) to predict MVI of HCC.We retrospectively analyzed the data for single primary HCCs that were evaluated with CEUS 1 week before surgical resection from December 2014 to February 2022. The study population was divided into training (n = 198) and test (n = 54) cohorts. In this study, three DL models (Resnet50, Resnet50+BAM, Resnet50+SE) were trained using the training cohort and tested in the test cohort. Tumor characteristics were also evaluated by radiologists, and multivariate regression analysis was performed to determine independent indicators for the development of predictive nomogram models. The performance of the three DL models was compared to that of the MVI prediction model based on radiologist evaluations.The best-performing model, ResNet50+SE model achieved the ROC of 0.856, accuracy of 77.2, specificity of 93.9%, and sensitivity of 52.4% in the test group. The MVI prediction model based on a combination of three independent predictors showed a C-index of 0.729, accuracy of 69.4, specificity of 73.8%, and sensitivity of 62%.The DL algorithm can accurately predict MVI of HCC on the basis of CEUS images, to help identify high-risk patients for the assist treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI