Reshaping the Binding Pocket of Cellobiose 2-Epimerase for Improved Substrate Affinity and Isomerization Activity for Enabling Green Synthesis of Lactulose

化学 活动站点 异构化 立体化学 基质(水族馆) 纤维二糖 饱和突变 乳果糖 突变 突变体 生物化学 催化作用 纤维素酶 生物 基因 生态学
作者
Lu Wang,Jiali Gu,Wei Zhao,Mingming Wang,Kuan Rei Ng,Xiaomei Lyu,Ruijin Yang
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
卷期号:70 (50): 15879-15893 被引量:7
标识
DOI:10.1021/acs.jafc.2c06980
摘要

Enzymatic isomerization of lactose into lactulose via cellobiose 2-epimerase (CE) could provide an eco-friendly route for the industrial production of lactulose, a valuable food prebiotic. However, poor substrate affinity for lactose and preference for epimerization over isomerization hinder this application. Previous studies on CE improvement have focused on random mutagenesis or active site rational design; little is known about the relationship between substrate binding and enzyme efficacy, which was hence the subject of this study. First, residues 372W and 308W were identified as key for disaccharide recognition in CEs based on crystal structure alignment of the N-acetyl-glucosamine 2-epimerase superfamily and site-directed mutation. This binding domain was then reshaped through site saturation mutagenesis, resulting in seven mutants with enhanced isomerization activity. The optimal mutant CsCE/Q371E had significantly enhanced substrate affinity (Km, 269.65 mM vs Km, 417.5 mM), reduced epimerization activity, and 3.3-fold increased isomerization activity over the original CsCE. Molecular dynamics simulation further revealed that substituting Gln-371 with Glu strengthened the hydrogen-bonding network and altered the active site–substrate interactions, increasing the substrate stability and shifting the catalytic direction. This study uncovered new information about the substrate binding region and its mechanisms and impact on CE catalytic performance, paving the way for potential commercial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皖医梁朝伟完成签到 ,获得积分10
刚刚
汉堡包应助野性的南蕾采纳,获得10
刚刚
刚刚
便宜小师傅完成签到 ,获得积分10
1秒前
霏冉完成签到,获得积分10
1秒前
2秒前
Grayball应助包容的剑采纳,获得10
2秒前
董小天天完成签到,获得积分10
2秒前
2秒前
华仔应助qym采纳,获得10
2秒前
琅琊为刃完成签到,获得积分10
3秒前
酷波er应助hhh采纳,获得10
3秒前
3秒前
小巧的香氛完成签到 ,获得积分10
4秒前
4秒前
4秒前
zxcv23发布了新的文献求助10
4秒前
没有名称发布了新的文献求助10
4秒前
5秒前
5秒前
zier完成签到 ,获得积分10
6秒前
阡陌完成签到,获得积分10
6秒前
华仔应助毕业就好采纳,获得10
6秒前
liyi发布了新的文献求助10
6秒前
难过小天鹅完成签到,获得积分10
7秒前
非常可爱发布了新的文献求助20
7秒前
eee发布了新的文献求助10
7秒前
幸福胡萝卜完成签到,获得积分10
7秒前
8秒前
科研通AI5应助琅琊为刃采纳,获得10
8秒前
8秒前
8秒前
8秒前
寒冷的奇异果完成签到,获得积分10
9秒前
hziyu发布了新的文献求助10
10秒前
10秒前
野性的南蕾完成签到,获得积分10
10秒前
毛毛哦啊发布了新的文献求助10
10秒前
zzzzzk发布了新的文献求助10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672