已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Real-Time and Data-Driven Ground-Motion Prediction Framework for Earthquake Early Warning

地震预警系统 峰值地面加速度 地震学 预警系统 地质学 强地震动 地震动 事件(粒子物理) 贝叶斯概率 衰减 地震预报 地震模拟 残余物 大地测量学 计算机科学 算法 人工智能 物理 光学 电信 量子力学
作者
Avigyan Chatterjee,Nadine Igonin,Daniel T. Trugman
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society]
卷期号:113 (2): 676-689 被引量:6
标识
DOI:10.1785/0120220180
摘要

ABSTRACT The ShakeAlert earthquake early warning system in the western United States characterizes earthquake source locations and magnitudes in real time, issuing public alerts for areas where predicted ground-motion intensities exceed a threshold value. Although rapid source characterization methods have attracted significant scientific attention in recent years, the ground-motion models used by ShakeAlert have received notably less. This study develops a data-driven framework for earthquake early warning-specific ground-motion models by precomputing and incorporating site-specific corrections, while using a Bayesian approach to estimate event-specific corrections in real time. The study involves analyzing a quality-controlled set of more than 420,000 seismic recordings from 1389 M 3–7 events in the state of California, from 2011 to 2022. We first compare the observed ground motions to predictions from existing ground-motion models, namely the modified Boore and Atkinson (2008) and active crustal Next Generation Attenuation (NGA)-West2 ground-motion prediction equations, before implementing a new Bayesian model optimized for a real-time setting. Residual analysis of peak ground acceleration and peak ground velocity metrics across a host of earthquake rupture scenarios from the two ground-motion models show that the active crustal NGA-West2 model is better suited for ShakeAlert in California. In addition, the event-terms calculated using our Bayesian approach rapidly converge such that errors from earthquake magnitude estimation can be corrected for when forecasting shaking intensity in real time. Equipped with these improved ground-shaking predictions, we show that refined ShakeAlert warnings could be issued to the public within as soon as 5 s following ShakeAlert’s initial warning. This approach could be used both to reduce prediction uncertainties and thus improve ShakeAlert’s alerting decision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Andy完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
lanshuitai发布了新的文献求助10
4秒前
ddm发布了新的文献求助10
5秒前
唐云炳完成签到 ,获得积分10
6秒前
6秒前
AM发布了新的文献求助30
8秒前
耍酷的小土豆完成签到,获得积分20
10秒前
little2000完成签到 ,获得积分10
11秒前
尘飞扬应助余姚采纳,获得20
12秒前
99giddens发布了新的文献求助10
12秒前
小熊熊完成签到,获得积分10
13秒前
bfz50完成签到,获得积分10
14秒前
科研通AI2S应助大观天下采纳,获得10
15秒前
可爱的函函应助AM采纳,获得10
17秒前
17秒前
18秒前
酷波er应助阿菜采纳,获得10
18秒前
852应助wojiushizmediao采纳,获得80
19秒前
鹅鹅完成签到 ,获得积分10
22秒前
hjx完成签到 ,获得积分10
25秒前
领导范儿应助cherrymoon3采纳,获得10
26秒前
杳鸢应助GillianRan采纳,获得80
29秒前
30秒前
30秒前
Ava应助科研通管家采纳,获得10
31秒前
竹筏过海应助科研通管家采纳,获得80
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
竹筏过海应助科研通管家采纳,获得80
31秒前
顾矜应助科研通管家采纳,获得10
31秒前
模糊中正应助科研通管家采纳,获得20
31秒前
31秒前
所所应助小会采纳,获得10
33秒前
快乐的幼丝完成签到 ,获得积分10
35秒前
大观天下发布了新的文献求助10
36秒前
36秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268361
求助须知:如何正确求助?哪些是违规求助? 2907918
关于积分的说明 8343762
捐赠科研通 2578207
什么是DOI,文献DOI怎么找? 1401844
科研通“疑难数据库(出版商)”最低求助积分说明 655191
邀请新用户注册赠送积分活动 634350