A Real-Time and Data-Driven Ground-Motion Prediction Framework for Earthquake Early Warning

地震预警系统 峰值地面加速度 地震学 预警系统 地质学 强地震动 地震动 事件(粒子物理) 贝叶斯概率 衰减 地震预报 地震模拟 残余物 大地测量学 计算机科学 算法 人工智能 物理 光学 电信 量子力学
作者
Avigyan Chatterjee,Nadine Igonin,Daniel T. Trugman
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society of America]
卷期号:113 (2): 676-689 被引量:6
标识
DOI:10.1785/0120220180
摘要

ABSTRACT The ShakeAlert earthquake early warning system in the western United States characterizes earthquake source locations and magnitudes in real time, issuing public alerts for areas where predicted ground-motion intensities exceed a threshold value. Although rapid source characterization methods have attracted significant scientific attention in recent years, the ground-motion models used by ShakeAlert have received notably less. This study develops a data-driven framework for earthquake early warning-specific ground-motion models by precomputing and incorporating site-specific corrections, while using a Bayesian approach to estimate event-specific corrections in real time. The study involves analyzing a quality-controlled set of more than 420,000 seismic recordings from 1389 M 3–7 events in the state of California, from 2011 to 2022. We first compare the observed ground motions to predictions from existing ground-motion models, namely the modified Boore and Atkinson (2008) and active crustal Next Generation Attenuation (NGA)-West2 ground-motion prediction equations, before implementing a new Bayesian model optimized for a real-time setting. Residual analysis of peak ground acceleration and peak ground velocity metrics across a host of earthquake rupture scenarios from the two ground-motion models show that the active crustal NGA-West2 model is better suited for ShakeAlert in California. In addition, the event-terms calculated using our Bayesian approach rapidly converge such that errors from earthquake magnitude estimation can be corrected for when forecasting shaking intensity in real time. Equipped with these improved ground-shaking predictions, we show that refined ShakeAlert warnings could be issued to the public within as soon as 5 s following ShakeAlert’s initial warning. This approach could be used both to reduce prediction uncertainties and thus improve ShakeAlert’s alerting decision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韭菜仔完成签到,获得积分10
刚刚
小南发布了新的文献求助10
1秒前
山野村夫应助cc采纳,获得10
1秒前
Lucas应助威武的青采纳,获得10
2秒前
2秒前
faa发布了新的文献求助10
3秒前
王木木完成签到,获得积分10
3秒前
归tu发布了新的文献求助10
3秒前
zi完成签到,获得积分10
4秒前
SYLH应助zhang采纳,获得10
4秒前
5秒前
枕月听松发布了新的文献求助10
5秒前
6秒前
赘婿应助zi采纳,获得10
7秒前
安静曼寒发布了新的文献求助10
8秒前
陈博文发布了新的文献求助10
8秒前
8秒前
科目三应助康康采纳,获得10
8秒前
小虾米发布了新的文献求助10
8秒前
淡定香氛完成签到,获得积分10
8秒前
迷路的晓旋完成签到,获得积分10
9秒前
YDU发布了新的文献求助10
9秒前
充电宝应助EasonChan采纳,获得10
9秒前
zyfan完成签到,获得积分10
11秒前
山复尔尔发布了新的文献求助10
11秒前
研友_ngqjz8发布了新的文献求助30
11秒前
11秒前
自由从阳完成签到,获得积分20
12秒前
无私的芹应助鬼火采纳,获得10
12秒前
隐形曼青应助鬼火采纳,获得10
12秒前
12秒前
12秒前
姜科就叫你完成签到,获得积分10
13秒前
小谢发布了新的文献求助10
14秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
布鲁克完成签到,获得积分10
16秒前
Gin发布了新的文献求助10
16秒前
向北发布了新的文献求助10
16秒前
Han完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952701
求助须知:如何正确求助?哪些是违规求助? 3498211
关于积分的说明 11090706
捐赠科研通 3228753
什么是DOI,文献DOI怎么找? 1785094
邀请新用户注册赠送积分活动 869086
科研通“疑难数据库(出版商)”最低求助积分说明 801350