Noninvasive neuroimaging and spatial filter transform enable ultra low delay motor imagery EEG decoding

计算机科学 脑-机接口 脑电图 人工智能 解码方法 模式识别(心理学) 特征提取 运动表象 空间滤波器 计算机视觉 算法 神经科学 生物
作者
Tao Fang,Junkongshuai Wang,Wei Mu,Zuoting Song,Xueze Zhang,Gege Zhan,Pengchao Wang,Jianxiong Bin,Lan Niu,Lihua Zhang,Xiaoyang Kang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (6): 066034-066034 被引量:1
标识
DOI:10.1088/1741-2552/aca82d
摘要

Objective.The brain-computer interface (BCI) system based on sensorimotor rhythm can convert the human spirit into instructions for machine control, and it is a new human-computer interaction system with broad applications. However, the spatial resolution of scalp electroencephalogram (EEG) is limited due to the presence of volume conduction effects. Therefore, it is very meaningful to explore intracranial activities in a noninvasive way and improve the spatial resolution of EEG. Meanwhile, low-delay decoding is an essential factor for the development of a real-time BCI system.Approach.In this paper, EEG conduction is modeled by using public head anatomical templates, and cortical EEG is obtained using dynamic parameter statistical mapping. To solve the problem of a large amount of computation caused by the increase in the number of channels, the filter bank common spatial pattern method is used to obtain a spatial filter kernel, which reduces the computational cost of feature extraction to a linear level. And the feature classification and selection of important features are completed using a neural network containing band-spatial-time domain self-attention mechanisms.Main results.The results show that the method proposed in this paper achieves high accuracy for the four types of motor imagery EEG classification tasks, with fairly low latency and high physiological interpretability.Significance.The proposed decoding framework facilitates the realization of low-latency human-computer interaction systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
菲菲呀完成签到,获得积分10
1秒前
Rrr发布了新的文献求助10
1秒前
3秒前
陌路完成签到,获得积分10
3秒前
善学以致用应助leon采纳,获得30
3秒前
4秒前
斯文败类应助嘻嘻采纳,获得10
4秒前
科研通AI5应助小只bb采纳,获得30
4秒前
yyyy发布了新的文献求助10
4秒前
2023AKY完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
彭于晏应助惠惠采纳,获得10
7秒前
风魂剑主完成签到,获得积分10
8秒前
yryzst9899发布了新的文献求助10
8秒前
9秒前
飘逸小笼包完成签到,获得积分10
9秒前
科研小郑完成签到,获得积分10
9秒前
CipherSage应助熊boy采纳,获得10
9秒前
XXGG完成签到 ,获得积分10
10秒前
大个应助舒心赛凤采纳,获得10
10秒前
晨曦发布了新的文献求助10
11秒前
11秒前
ff0110完成签到,获得积分10
12秒前
星辰大海应助苹果萧采纳,获得10
12秒前
徐徐完成签到,获得积分10
12秒前
哈哈哈哈发布了新的文献求助10
13秒前
请叫我风吹麦浪应助yoon采纳,获得10
13秒前
认真的青柠完成签到,获得积分10
13秒前
bbanshan完成签到,获得积分10
13秒前
卫生纸发布了新的文献求助10
13秒前
13秒前
14秒前
奔奔完成签到,获得积分10
14秒前
脑洞疼应助李来仪采纳,获得10
15秒前
15秒前
15秒前
demonox发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794