Inverse Design of Energy‐Absorbing Metamaterials by Topology Optimization

拓扑优化 超材料 拓扑(电路) 反向 数学优化 有限元法 计算机科学 能量(信号处理) 数学 材料科学 几何学 光学 物理 热力学 量子力学 组合数学
作者
Qingliang Zeng,Shengyu Duan,Zeang Zhao,Panding Wang,Hongshuai Lei
出处
期刊:Advanced Science [Wiley]
卷期号:10 (4) 被引量:89
标识
DOI:10.1002/advs.202204977
摘要

Compared with the forward design method through the control of geometric parameters and material types, the inverse design method based on the target stress-strain curve is helpful for the discovery of new structures. This study proposes an optimization strategy for mechanical metamaterials based on a genetic algorithm and establishes a topology optimization method for energy-absorbing structures with the desired stress-strain curves. A series of structural mutation algorithms and design-domain-independent mesh generation method are developed to improve the efficiency of finite element analysis and optimization iteration. The algorithm realizes the design of ideal energy-absorbing structures, which are verified by additive manufacturing and experimental characterization. The error between the stress-strain curve of the designed structure and the target curve is less than 5%, and the densification strain reaches 0.6. Furthermore, special attention is paid to passive pedestrian protection and occupant protection, and a reasonable solution is given through the design of a multiplatform energy-absorbing structure. The proposed topology optimization framework provides a new solution path for the elastic-plastic large deformation problem that is unable to be resolved by using classical gradient algorithms or genetic algorithms, and simplifies the design process of energy-absorbing mechanical metamaterials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助15采纳,获得10
刚刚
人文完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
Xuer完成签到 ,获得积分10
1秒前
1秒前
www发布了新的文献求助10
2秒前
赘婿应助千玺的小粉丝儿采纳,获得10
2秒前
璐璐核桃露给璐璐核桃露的求助进行了留言
2秒前
情怀应助乖猫要努力采纳,获得10
2秒前
peter完成签到,获得积分10
2秒前
3秒前
愉快的铅笔完成签到,获得积分10
3秒前
David发布了新的文献求助10
3秒前
3秒前
3秒前
tufei完成签到,获得积分10
3秒前
mklwxhlsd发布了新的文献求助10
4秒前
科研通AI6应助荣荣采纳,获得10
4秒前
傲娇的项链完成签到,获得积分10
4秒前
看文献了发布了新的文献求助10
5秒前
小二郎应助DTO采纳,获得10
5秒前
筱筱发布了新的文献求助10
5秒前
天天发布了新的文献求助10
6秒前
新手小夏发布了新的文献求助10
6秒前
7秒前
夏季完成签到,获得积分10
7秒前
852应助MG采纳,获得10
8秒前
牛蛙丶丶发布了新的文献求助10
8秒前
轻松的小虾米完成签到,获得积分10
8秒前
汉堡包应助zhouyin2采纳,获得10
9秒前
lilili应助加油采纳,获得10
9秒前
9秒前
咕咕咕发布了新的文献求助10
10秒前
研友_8QxayZ发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
zxy完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721