Single-Channel Blind Signal Separation of the MHD Linear Vibration Sensor Based on Singular Spectrum Analysis and Fast Independent Component Analysis

振动 信号(编程语言) 声学 盲信号分离 噪音(视频) 窄带 干扰(通信) 固定点算法 频道(广播) 计算机科学 电子工程 工程类 物理 电信 人工智能 图像(数学) 程序设计语言
作者
Mengjie Xu,Wang Jian-han,Jiahui Mo,Xingfei Li,Jing Wang,Feng Ji
出处
期刊:Sensors [MDPI AG]
卷期号:22 (24): 9657-9657 被引量:1
标识
DOI:10.3390/s22249657
摘要

An MHD vibration sensor, as a new type of sensor used for vibration measurements, meets the technical requirements for the low-noisy measurement of acceleration, velocity, and micro-vibration in spacecraft during their development, launch, and orbit operations. A linear vibration sensor with a runway type based on MHD was independently developed by a laboratory. In a practical test, its output signal was mixed with a large amount of noise, in which the continuous narrowband interference was particularly prominent, resulting in the inability to efficiently carry out the real-time detection of micro-vibration. Considering the high interference of narrowband noise in linear vibration signals, a single-channel blind signal separation method based on SSA and FastICA is proposed in this study, which provides a new strategy for linear vibration signals. Firstly, the singular spectrum of the linear vibration signal with noise was analyzed to suppress the narrowband interference in the collected signal. Then, a FastICA algorithm was used to separate the independent signal source. The experimental results show that the proposed method can effectively separate the useful linear vibration signals from the collected signals with low SNR, which is suitable for the separation of the MHD linear vibration sensor and other vibration measurement sensors. Compared with EEMD, VMD, and wavelet threshold denoising, the SNR of the separated signal is increased by 10 times on average. Through the verification of the actual acquisition of the linear vibration signal, this method has a good denoising effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
skyblue完成签到,获得积分10
刚刚
一抹浅色完成签到 ,获得积分10
1秒前
阿冰狸子完成签到,获得积分20
1秒前
寒冷的银耳汤完成签到,获得积分10
1秒前
充电宝应助黑衣人的秘密采纳,获得10
2秒前
小海应助旭日采纳,获得10
2秒前
小潘完成签到 ,获得积分10
3秒前
打打应助qzj采纳,获得10
3秒前
3秒前
@斤斤计较发布了新的文献求助10
3秒前
科目三应助图苏采纳,获得30
4秒前
慕青应助安静大树采纳,获得10
5秒前
完美世界应助liux采纳,获得10
5秒前
丘比特应助哈哈采纳,获得10
6秒前
jiajie_qin应助科研通管家采纳,获得20
6秒前
打打应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
Nancy完成签到 ,获得积分10
6秒前
cocolu应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
6秒前
Lucas应助科研通管家采纳,获得10
7秒前
之道应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
李健的粉丝团团长应助ZQZ采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
香蕉觅云应助激情的一斩采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
hnl应助科研通管家采纳,获得10
7秒前
7秒前
五五发布了新的文献求助10
7秒前
8秒前
zdx1022完成签到,获得积分10
9秒前
11秒前
乖啊发布了新的文献求助10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454789
求助须知:如何正确求助?哪些是违规求助? 3049989
关于积分的说明 9020079
捐赠科研通 2738731
什么是DOI,文献DOI怎么找? 1502219
科研通“疑难数据库(出版商)”最低求助积分说明 694453
邀请新用户注册赠送积分活动 693143