亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of immune microenvironment subtypes and signature genes for Alzheimer’s disease diagnosis and risk prediction based on explainable machine learning

免疫系统 肿瘤微环境 Lasso(编程语言) 计算生物学 疾病 机器学习 人工智能 基因 生物 计算机科学 生物信息学 医学 免疫学 遗传学 内科学 万维网
作者
Yongxing Lai,Peiqiang Lin,Fan Lin,Manli Chen,Chunjin Lin,Xing Lin,Lijuan Wu,Mouwei Zheng,Jianhao Chen
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:13 被引量:32
标识
DOI:10.3389/fimmu.2022.1046410
摘要

Background Using interpretable machine learning, we sought to define the immune microenvironment subtypes and distinctive genes in AD. Methods ssGSEA, LASSO regression, and WGCNA algorithms were used to evaluate immune state in AD patients. To predict the fate of AD and identify distinctive genes, six machine learning algorithms were developed. The output of machine learning models was interpreted using the SHAP and LIME algorithms. For external validation, four separate GEO databases were used. We estimated the subgroups of the immunological microenvironment using unsupervised clustering. Further research was done on the variations in immunological microenvironment, enhanced functions and pathways, and therapeutic medicines between these subtypes. Finally, the expression of characteristic genes was verified using the AlzData and pan-cancer databases and RT-PCR analysis. Results It was determined that AD is connected to changes in the immunological microenvironment. WGCNA revealed 31 potential immune genes, of which the greenyellow and blue modules were shown to be most associated with infiltrated immune cells. In the testing set, the XGBoost algorithm had the best performance with an AUC of 0.86 and a P-R value of 0.83. Following the screening of the testing set by machine learning algorithms and the verification of independent datasets, five genes (CXCR4, PPP3R1, HSP90AB1, CXCL10, and S100A12) that were closely associated with AD pathological biomarkers and allowed for the accurate prediction of AD progression were found to be immune microenvironment-related genes. The feature gene-based nomogram may provide clinical advantages to patients. Two immune microenvironment subgroups for AD patients were identified, subtype2 was linked to a metabolic phenotype, subtype1 belonged to the immune-active kind. MK-866 and arachidonyltrifluoromethane were identified as the top treatment agents for subtypes 1 and 2, respectively. These five distinguishing genes were found to be intimately linked to the development of the disease, according to the Alzdata database, pan-cancer research, and RT-PCR analysis. Conclusion The hub genes associated with the immune microenvironment that are most strongly associated with the progression of pathology in AD are CXCR4, PPP3R1, HSP90AB1, CXCL10, and S100A12. The hypothesized molecular subgroups might offer novel perceptions for individualized AD treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助Michelle采纳,获得10
2秒前
Kevin完成签到,获得积分10
3秒前
7秒前
movoandy发布了新的文献求助10
11秒前
18秒前
hourt2395发布了新的文献求助10
23秒前
movoandy完成签到,获得积分10
27秒前
28秒前
传奇3应助翻译度采纳,获得10
31秒前
hourt2395完成签到,获得积分20
34秒前
39秒前
21145077发布了新的文献求助10
45秒前
wwho_O完成签到 ,获得积分10
47秒前
48秒前
53秒前
ceeray23发布了新的文献求助20
54秒前
xhh完成签到,获得积分10
59秒前
1分钟前
1分钟前
樊乐发布了新的文献求助10
1分钟前
YYL完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Owen应助阳光的朝雪采纳,获得10
1分钟前
樊乐完成签到,获得积分10
1分钟前
1分钟前
Lan完成签到 ,获得积分10
1分钟前
弹弹弹完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
琥珀三文发布了新的文献求助10
2分钟前
2分钟前
小二郎应助琥珀三文采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509468
求助须知:如何正确求助?哪些是违规求助? 4604372
关于积分的说明 14489671
捐赠科研通 4539142
什么是DOI,文献DOI怎么找? 2487317
邀请新用户注册赠送积分活动 1469759
关于科研通互助平台的介绍 1441996