Identification of immune microenvironment subtypes and signature genes for Alzheimer’s disease diagnosis and risk prediction based on explainable machine learning

免疫系统 肿瘤微环境 Lasso(编程语言) 计算生物学 疾病 机器学习 人工智能 基因 生物 计算机科学 生物信息学 医学 免疫学 遗传学 内科学 万维网
作者
Yongxing Lai,Peiqiang Lin,Fan Lin,Manli Chen,Chunjin Lin,Xing Lin,Lijuan Wu,Mouwei Zheng,Jianhao Chen
出处
期刊:Frontiers in Immunology [Frontiers Media]
卷期号:13 被引量:32
标识
DOI:10.3389/fimmu.2022.1046410
摘要

Background Using interpretable machine learning, we sought to define the immune microenvironment subtypes and distinctive genes in AD. Methods ssGSEA, LASSO regression, and WGCNA algorithms were used to evaluate immune state in AD patients. To predict the fate of AD and identify distinctive genes, six machine learning algorithms were developed. The output of machine learning models was interpreted using the SHAP and LIME algorithms. For external validation, four separate GEO databases were used. We estimated the subgroups of the immunological microenvironment using unsupervised clustering. Further research was done on the variations in immunological microenvironment, enhanced functions and pathways, and therapeutic medicines between these subtypes. Finally, the expression of characteristic genes was verified using the AlzData and pan-cancer databases and RT-PCR analysis. Results It was determined that AD is connected to changes in the immunological microenvironment. WGCNA revealed 31 potential immune genes, of which the greenyellow and blue modules were shown to be most associated with infiltrated immune cells. In the testing set, the XGBoost algorithm had the best performance with an AUC of 0.86 and a P-R value of 0.83. Following the screening of the testing set by machine learning algorithms and the verification of independent datasets, five genes (CXCR4, PPP3R1, HSP90AB1, CXCL10, and S100A12) that were closely associated with AD pathological biomarkers and allowed for the accurate prediction of AD progression were found to be immune microenvironment-related genes. The feature gene-based nomogram may provide clinical advantages to patients. Two immune microenvironment subgroups for AD patients were identified, subtype2 was linked to a metabolic phenotype, subtype1 belonged to the immune-active kind. MK-866 and arachidonyltrifluoromethane were identified as the top treatment agents for subtypes 1 and 2, respectively. These five distinguishing genes were found to be intimately linked to the development of the disease, according to the Alzdata database, pan-cancer research, and RT-PCR analysis. Conclusion The hub genes associated with the immune microenvironment that are most strongly associated with the progression of pathology in AD are CXCR4, PPP3R1, HSP90AB1, CXCL10, and S100A12. The hypothesized molecular subgroups might offer novel perceptions for individualized AD treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助Tony12采纳,获得10
刚刚
1秒前
jam发布了新的文献求助10
1秒前
萨尔莫斯发布了新的文献求助10
2秒前
刘钊扬完成签到,获得积分10
3秒前
halo完成签到,获得积分10
5秒前
demonox发布了新的文献求助10
5秒前
6秒前
7秒前
爽大包完成签到,获得积分20
8秒前
8秒前
9秒前
ChenJohnny应助zzznznnn采纳,获得10
10秒前
小蘑菇应助萨尔莫斯采纳,获得10
10秒前
11秒前
小马甲应助PP采纳,获得10
11秒前
11秒前
燕燕发布了新的文献求助10
11秒前
mariawang发布了新的文献求助10
12秒前
13秒前
思思发布了新的文献求助10
14秒前
sochiyuen完成签到,获得积分10
14秒前
shen发布了新的文献求助10
15秒前
草莓雪酪完成签到 ,获得积分10
15秒前
李雪发布了新的文献求助20
15秒前
Dave发布了新的文献求助10
16秒前
17秒前
缓慢珠发布了新的文献求助10
19秒前
20秒前
在水一方应助燕燕采纳,获得10
20秒前
枪手发布了新的文献求助10
22秒前
英姑应助科研通管家采纳,获得10
22秒前
隐形曼青应助shen采纳,获得10
22秒前
田様应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
糯米鸡完成签到,获得积分20
23秒前
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
23秒前
深情安青应助科研通管家采纳,获得10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959677
求助须知:如何正确求助?哪些是违规求助? 3505910
关于积分的说明 11126825
捐赠科研通 3237865
什么是DOI,文献DOI怎么找? 1789389
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802963