清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Identification of immune microenvironment subtypes and signature genes for Alzheimer’s disease diagnosis and risk prediction based on explainable machine learning

免疫系统 肿瘤微环境 Lasso(编程语言) 计算生物学 疾病 机器学习 人工智能 基因 生物 计算机科学 生物信息学 医学 免疫学 遗传学 内科学 万维网
作者
Yongxing Lai,Peiqiang Lin,Fan Lin,Manli Chen,Chunjin Lin,Xing Lin,Lijuan Wu,Mouwei Zheng,Jianhao Chen
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:13 被引量:32
标识
DOI:10.3389/fimmu.2022.1046410
摘要

Background Using interpretable machine learning, we sought to define the immune microenvironment subtypes and distinctive genes in AD. Methods ssGSEA, LASSO regression, and WGCNA algorithms were used to evaluate immune state in AD patients. To predict the fate of AD and identify distinctive genes, six machine learning algorithms were developed. The output of machine learning models was interpreted using the SHAP and LIME algorithms. For external validation, four separate GEO databases were used. We estimated the subgroups of the immunological microenvironment using unsupervised clustering. Further research was done on the variations in immunological microenvironment, enhanced functions and pathways, and therapeutic medicines between these subtypes. Finally, the expression of characteristic genes was verified using the AlzData and pan-cancer databases and RT-PCR analysis. Results It was determined that AD is connected to changes in the immunological microenvironment. WGCNA revealed 31 potential immune genes, of which the greenyellow and blue modules were shown to be most associated with infiltrated immune cells. In the testing set, the XGBoost algorithm had the best performance with an AUC of 0.86 and a P-R value of 0.83. Following the screening of the testing set by machine learning algorithms and the verification of independent datasets, five genes (CXCR4, PPP3R1, HSP90AB1, CXCL10, and S100A12) that were closely associated with AD pathological biomarkers and allowed for the accurate prediction of AD progression were found to be immune microenvironment-related genes. The feature gene-based nomogram may provide clinical advantages to patients. Two immune microenvironment subgroups for AD patients were identified, subtype2 was linked to a metabolic phenotype, subtype1 belonged to the immune-active kind. MK-866 and arachidonyltrifluoromethane were identified as the top treatment agents for subtypes 1 and 2, respectively. These five distinguishing genes were found to be intimately linked to the development of the disease, according to the Alzdata database, pan-cancer research, and RT-PCR analysis. Conclusion The hub genes associated with the immune microenvironment that are most strongly associated with the progression of pathology in AD are CXCR4, PPP3R1, HSP90AB1, CXCL10, and S100A12. The hypothesized molecular subgroups might offer novel perceptions for individualized AD treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
carolsoongmm完成签到,获得积分10
49秒前
hu完成签到,获得积分20
57秒前
58秒前
精明代灵完成签到,获得积分10
1分钟前
精明代灵发布了新的文献求助10
1分钟前
hu发布了新的文献求助10
1分钟前
1分钟前
gwbk完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
kklkimo完成签到,获得积分10
1分钟前
慕青应助erjfuhe采纳,获得10
2分钟前
月军完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Wenfeifei发布了新的文献求助50
3分钟前
无私雅柏完成签到 ,获得积分10
4分钟前
orixero应助笑点低的斑马采纳,获得10
4分钟前
大医仁心完成签到 ,获得积分10
4分钟前
Criminology34应助纯真的傲玉采纳,获得10
4分钟前
Criminology34应助纯真的傲玉采纳,获得10
5分钟前
5分钟前
5分钟前
陳.发布了新的文献求助10
5分钟前
5分钟前
bji完成签到,获得积分10
6分钟前
兰球的仙人掌完成签到 ,获得积分10
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
BowieHuang应助科研通管家采纳,获得10
6分钟前
af完成签到,获得积分10
6分钟前
6分钟前
勤劳的渊思完成签到 ,获得积分10
6分钟前
两个榴莲完成签到,获得积分0
6分钟前
大胆易巧完成签到 ,获得积分10
7分钟前
7分钟前
8分钟前
hu发布了新的文献求助10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664524
求助须知:如何正确求助?哪些是违规求助? 4864111
关于积分的说明 15107906
捐赠科研通 4823161
什么是DOI,文献DOI怎么找? 2582004
邀请新用户注册赠送积分活动 1536099
关于科研通互助平台的介绍 1494513