Identification of immune microenvironment subtypes and signature genes for Alzheimer’s disease diagnosis and risk prediction based on explainable machine learning

免疫系统 肿瘤微环境 Lasso(编程语言) 计算生物学 疾病 机器学习 人工智能 基因 生物 计算机科学 生物信息学 医学 免疫学 遗传学 内科学 万维网
作者
Yongxing Lai,Peiqiang Lin,Fan Lin,Manli Chen,Chunjin Lin,Xing Lin,Lijuan Wu,Mouwei Zheng,Jianhao Chen
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:13 被引量:32
标识
DOI:10.3389/fimmu.2022.1046410
摘要

Background Using interpretable machine learning, we sought to define the immune microenvironment subtypes and distinctive genes in AD. Methods ssGSEA, LASSO regression, and WGCNA algorithms were used to evaluate immune state in AD patients. To predict the fate of AD and identify distinctive genes, six machine learning algorithms were developed. The output of machine learning models was interpreted using the SHAP and LIME algorithms. For external validation, four separate GEO databases were used. We estimated the subgroups of the immunological microenvironment using unsupervised clustering. Further research was done on the variations in immunological microenvironment, enhanced functions and pathways, and therapeutic medicines between these subtypes. Finally, the expression of characteristic genes was verified using the AlzData and pan-cancer databases and RT-PCR analysis. Results It was determined that AD is connected to changes in the immunological microenvironment. WGCNA revealed 31 potential immune genes, of which the greenyellow and blue modules were shown to be most associated with infiltrated immune cells. In the testing set, the XGBoost algorithm had the best performance with an AUC of 0.86 and a P-R value of 0.83. Following the screening of the testing set by machine learning algorithms and the verification of independent datasets, five genes (CXCR4, PPP3R1, HSP90AB1, CXCL10, and S100A12) that were closely associated with AD pathological biomarkers and allowed for the accurate prediction of AD progression were found to be immune microenvironment-related genes. The feature gene-based nomogram may provide clinical advantages to patients. Two immune microenvironment subgroups for AD patients were identified, subtype2 was linked to a metabolic phenotype, subtype1 belonged to the immune-active kind. MK-866 and arachidonyltrifluoromethane were identified as the top treatment agents for subtypes 1 and 2, respectively. These five distinguishing genes were found to be intimately linked to the development of the disease, according to the Alzdata database, pan-cancer research, and RT-PCR analysis. Conclusion The hub genes associated with the immune microenvironment that are most strongly associated with the progression of pathology in AD are CXCR4, PPP3R1, HSP90AB1, CXCL10, and S100A12. The hypothesized molecular subgroups might offer novel perceptions for individualized AD treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Qinghen发布了新的文献求助10
1秒前
刘shuchang发布了新的文献求助10
1秒前
英吉利25发布了新的文献求助30
1秒前
2秒前
Loong完成签到,获得积分10
2秒前
喜悦幻巧完成签到,获得积分10
2秒前
2秒前
西窗雪完成签到,获得积分10
3秒前
3秒前
Mavis发布了新的文献求助10
3秒前
3秒前
秘密发布了新的文献求助10
3秒前
3秒前
星辰大海应助小李采纳,获得10
4秒前
科研通AI6应助悦耳逍遥采纳,获得10
4秒前
4秒前
4秒前
Heloise发布了新的文献求助10
4秒前
潘岩完成签到,获得积分10
5秒前
5秒前
5秒前
小豹子完成签到,获得积分10
6秒前
6秒前
开朗香旋发布了新的文献求助10
7秒前
缓慢沁完成签到,获得积分10
7秒前
巴比龙完成签到,获得积分10
7秒前
Hayat发布了新的文献求助20
7秒前
8秒前
8秒前
Metbutterly完成签到,获得积分10
9秒前
hhhg应助diguohu采纳,获得10
9秒前
酷炫贞发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
默默平文发布了新的文献求助10
9秒前
Criminology34应助热心凌寒采纳,获得10
9秒前
阿伟完成签到,获得积分10
9秒前
了了发布了新的文献求助10
10秒前
10秒前
月色发布了新的文献求助10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429316
求助须知:如何正确求助?哪些是违规求助? 4542743
关于积分的说明 14182778
捐赠科研通 4460720
什么是DOI,文献DOI怎么找? 2445823
邀请新用户注册赠送积分活动 1437000
关于科研通互助平台的介绍 1414164