Identification of immune microenvironment subtypes and signature genes for Alzheimer’s disease diagnosis and risk prediction based on explainable machine learning

免疫系统 肿瘤微环境 Lasso(编程语言) 计算生物学 疾病 机器学习 人工智能 基因 生物 计算机科学 生物信息学 医学 免疫学 遗传学 内科学 万维网
作者
Yongxing Lai,Peiqiang Lin,Fan Lin,Manli Chen,Chunjin Lin,Xing Lin,Lijuan Wu,Mouwei Zheng,Jianhao Chen
出处
期刊:Frontiers in Immunology [Frontiers Media]
卷期号:13 被引量:32
标识
DOI:10.3389/fimmu.2022.1046410
摘要

Background Using interpretable machine learning, we sought to define the immune microenvironment subtypes and distinctive genes in AD. Methods ssGSEA, LASSO regression, and WGCNA algorithms were used to evaluate immune state in AD patients. To predict the fate of AD and identify distinctive genes, six machine learning algorithms were developed. The output of machine learning models was interpreted using the SHAP and LIME algorithms. For external validation, four separate GEO databases were used. We estimated the subgroups of the immunological microenvironment using unsupervised clustering. Further research was done on the variations in immunological microenvironment, enhanced functions and pathways, and therapeutic medicines between these subtypes. Finally, the expression of characteristic genes was verified using the AlzData and pan-cancer databases and RT-PCR analysis. Results It was determined that AD is connected to changes in the immunological microenvironment. WGCNA revealed 31 potential immune genes, of which the greenyellow and blue modules were shown to be most associated with infiltrated immune cells. In the testing set, the XGBoost algorithm had the best performance with an AUC of 0.86 and a P-R value of 0.83. Following the screening of the testing set by machine learning algorithms and the verification of independent datasets, five genes (CXCR4, PPP3R1, HSP90AB1, CXCL10, and S100A12) that were closely associated with AD pathological biomarkers and allowed for the accurate prediction of AD progression were found to be immune microenvironment-related genes. The feature gene-based nomogram may provide clinical advantages to patients. Two immune microenvironment subgroups for AD patients were identified, subtype2 was linked to a metabolic phenotype, subtype1 belonged to the immune-active kind. MK-866 and arachidonyltrifluoromethane were identified as the top treatment agents for subtypes 1 and 2, respectively. These five distinguishing genes were found to be intimately linked to the development of the disease, according to the Alzdata database, pan-cancer research, and RT-PCR analysis. Conclusion The hub genes associated with the immune microenvironment that are most strongly associated with the progression of pathology in AD are CXCR4, PPP3R1, HSP90AB1, CXCL10, and S100A12. The hypothesized molecular subgroups might offer novel perceptions for individualized AD treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
今后应助阔达的诗蕾采纳,获得10
3秒前
西西完成签到 ,获得积分10
4秒前
晓晓来了发布了新的文献求助10
5秒前
6秒前
6秒前
默默善愁发布了新的文献求助10
6秒前
木冉完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助150
7秒前
脑洞疼应助深渊晾衣杆采纳,获得10
11秒前
hyw发布了新的文献求助10
13秒前
鲜玖儿完成签到,获得积分10
14秒前
王哈哈完成签到,获得积分10
14秒前
杨三多完成签到,获得积分10
14秒前
16秒前
愤怒的老太完成签到,获得积分10
17秒前
健康的代真完成签到 ,获得积分20
18秒前
邵宏伟发布了新的文献求助10
21秒前
科研通AI6应助默默善愁采纳,获得10
22秒前
嘉子完成签到,获得积分10
25秒前
缚大哥完成签到,获得积分10
25秒前
优雅的老姆完成签到,获得积分10
27秒前
27秒前
30秒前
邵宏伟完成签到,获得积分10
30秒前
31秒前
31秒前
Zhaoyuemeng完成签到 ,获得积分10
32秒前
35秒前
香蕉觅云应助科研通管家采纳,获得10
36秒前
赘婿应助科研通管家采纳,获得10
36秒前
搜集达人应助科研通管家采纳,获得10
36秒前
汉堡包应助科研通管家采纳,获得10
37秒前
领导范儿应助科研通管家采纳,获得30
37秒前
JamesPei应助科研通管家采纳,获得10
37秒前
共享精神应助科研通管家采纳,获得10
37秒前
乐乐应助科研通管家采纳,获得10
37秒前
Orange应助科研通管家采纳,获得10
37秒前
慕青应助科研通管家采纳,获得10
37秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Symbiosis: A Very Short Introduction 1500
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
Letters from Rewi Alley to Ida Pruitt, 1954-1964, vol. 1 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4967770
求助须知:如何正确求助?哪些是违规求助? 4225455
关于积分的说明 13159277
捐赠科研通 4012275
什么是DOI,文献DOI怎么找? 2195475
邀请新用户注册赠送积分活动 1208861
关于科研通互助平台的介绍 1122837