Context-Aware Poly(A) Signal Prediction Model via Deep Spatial–Temporal Neural Networks

计算机科学 聚腺苷酸 人工智能 背景(考古学) 特征(语言学) 人工神经网络 深度学习 模式识别(心理学) 交叉熵 参数统计 参数化模型 推论 机器学习 信使核糖核酸 数学 生物 统计 哲学 古生物学 基因 生物化学 语言学
作者
Yanbu Guo,Dongming Zhou,Pu Li,Chaoyang Li,Ahmed Alsaedi
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:8
标识
DOI:10.1109/tnnls.2022.3226301
摘要

Polyadenylation Poly(A) is an essential process during messenger RNA (mRNA) maturation in biological eukaryote systems. Identifying Poly(A) signals (PASs) from the genome level is the key to understanding the mechanism of translation regulation and mRNA metabolism. In this work, we propose a deep dual-dynamic context-aware Poly(A) signal prediction model, called multiscale convolution with self-attention networks (MCANet), to adaptively uncover the spatial-temporal contextual dependence information. Specifically, the model automatically learns and strengthens informative features from the temporalwise and the spatialwise dimension. The identity connectivity performs contextual feature maps of Poly(A) data by direct connections from previous layers to subsequent layers. Then, a fully parametric rectified linear unit (FP-RELU) with dual-dynamic coefficients is devised to make the training of the model easier and enhance the generalization ability. A cross-entropy loss (CL) function is designed to make the model focus on samples that are easy to misclassify. Experiments on different Poly(A) signals demonstrate the superior performance of the proposed MCANet, and an ablation study shows the effectiveness of the network design for the feature learning and prediction of Poly(A) signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
feier完成签到,获得积分10
1秒前
无语的麦片完成签到,获得积分10
2秒前
2秒前
冷傲机器猫完成签到,获得积分10
3秒前
星辰大海应助YQQ采纳,获得10
3秒前
4秒前
Fairy发布了新的文献求助10
4秒前
Hello应助Sir.夏季风采纳,获得10
4秒前
bong完成签到,获得积分10
5秒前
6秒前
7秒前
蔡余文完成签到,获得积分10
7秒前
7秒前
张一诺021222完成签到,获得积分10
7秒前
7秒前
orixero应助sususu采纳,获得10
8秒前
dild完成签到,获得积分10
8秒前
大胆白凝发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
10秒前
dild发布了新的文献求助10
11秒前
12秒前
WZZ关注了科研通微信公众号
12秒前
领导范儿应助大胆白凝采纳,获得10
13秒前
13秒前
FIN应助111舒舒采纳,获得10
14秒前
FIN应助111舒舒采纳,获得10
14秒前
14秒前
12发布了新的文献求助10
14秒前
小艾冂学发布了新的文献求助10
15秒前
柯一一应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
我嘞个豆应助科研通管家采纳,获得20
16秒前
16秒前
16秒前
酷波er应助科研通管家采纳,获得10
17秒前
17秒前
英姑应助科研通管家采纳,获得10
17秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952868
求助须知:如何正确求助?哪些是违规求助? 3498310
关于积分的说明 11091370
捐赠科研通 3228948
什么是DOI,文献DOI怎么找? 1785159
邀请新用户注册赠送积分活动 869202
科研通“疑难数据库(出版商)”最低求助积分说明 801377