Exploration and validation of the prognostic value of RNA-binding proteins in hepatocellular carcinoma.

列线图 单变量 肝细胞癌 肿瘤科 单变量分析 多元分析 生物 内科学 基因 弗雷明翰风险评分 比例危险模型 多元统计 计算生物学 医学 疾病 遗传学 计算机科学 机器学习
作者
J Wang,K Han,Y Li,C Zhang,W-H Cui,Lianghao Zhu,T Luo,C-J Bian
出处
期刊:DOAJ: Directory of Open Access Journals - DOAJ 卷期号:26 (23): 8945-8958 被引量:4
标识
DOI:10.26355/eurrev_202212_30569
摘要

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. Increasing evidence suggests that the dysregulation of RNA-binding proteins (RBPs) is involved in the development of various cancers. However, there is a paucity of studies investigating the roles of RBPs in HCC.Data on HCC samples were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases (available at: www.ncbi.nlm.nih.gov/geo), and data regarding human RBPs were integrated from SONAR, XRNAX, and CARIC results. We identified modules associated with prognosis using weighted gene co-expression network analysis (WGCNA) and performed functional enrichment analysis. Univariate and least absolute shrinkage and selection operator (LASSO) regression analyses were used to identify prognostic RBPs and establish a prediction model. According to the median risk score, we separated patients into high- and low-risk groups and investigated the differences in immune cell infiltration, somatic mutations, and gene set enrichment. Univariate and multivariate regression analyses were used to identify prognostic factors for HCC. A nomogram was constructed, and its performance was evaluated with calibration curves.Sixteen RBPs (MEX3A, TTK, MRPL53, IQGAP3, PFN2, IMPDH1, TCOF1, DYNC1LI1, EIF2B4, NOL10, GNL2, EIF1B, PSMD1, AHSA1, SEC61A1, and YBX1) were identified as prognostic genes, and a prognostic model was established. Survival analysis indicated that the model had good predictive performance and that a high-risk score was significantly related to a poor prognosis. Additionally, there were significant differences in immune cell infiltration, somatic mutations, and gene set enrichment between the high- and low-risk groups. Univariate and multivariate regression analyses indicated that the RBP-based signature was an independent prognostic factor for HCC. The nomogram based on 16 RBPs performed well in predicting the overall survival of HCC patients.The RBP-based signature is an independent prognostic factor for HCC, and this study could provide an innovative method for analyzing prognostic biomarkers and therapeutic targets for HCC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NXK发布了新的文献求助10
1秒前
1秒前
Akim应助徐雨采纳,获得10
1秒前
2秒前
123完成签到,获得积分10
2秒前
2秒前
科研小白发布了新的文献求助10
2秒前
2秒前
Shirley发布了新的文献求助10
3秒前
3秒前
Zelytnn.Lo完成签到,获得积分10
3秒前
chen0815发布了新的文献求助10
4秒前
sq_gong完成签到 ,获得积分10
5秒前
5秒前
开朗依霜发布了新的文献求助10
5秒前
Hanoi347应助科研通管家采纳,获得10
5秒前
Mic应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
emily发布了新的文献求助10
6秒前
6秒前
lcs发布了新的文献求助10
6秒前
打打应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
Mic应助科研通管家采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
Chen0710发布了新的文献求助10
6秒前
思源应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
6秒前
Hanoi347应助科研通管家采纳,获得30
6秒前
慕青应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
Mic应助科研通管家采纳,获得10
7秒前
7秒前
we1发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665352
求助须知:如何正确求助?哪些是违规求助? 4876309
关于积分的说明 15113352
捐赠科研通 4824419
什么是DOI,文献DOI怎么找? 2582766
邀请新用户注册赠送积分活动 1536717
关于科研通互助平台的介绍 1495328