Exploration and validation of the prognostic value of RNA-binding proteins in hepatocellular carcinoma.

列线图 单变量 肝细胞癌 肿瘤科 单变量分析 多元分析 生物 内科学 基因 弗雷明翰风险评分 比例危险模型 多元统计 计算生物学 医学 疾病 遗传学 计算机科学 机器学习
作者
J Wang,K Han,Y Li,C Zhang,W-H Cui,Lianghao Zhu,T Luo,C-J Bian
出处
期刊:DOAJ: Directory of Open Access Journals - DOAJ 卷期号:26 (23): 8945-8958 被引量:4
标识
DOI:10.26355/eurrev_202212_30569
摘要

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. Increasing evidence suggests that the dysregulation of RNA-binding proteins (RBPs) is involved in the development of various cancers. However, there is a paucity of studies investigating the roles of RBPs in HCC.Data on HCC samples were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases (available at: www.ncbi.nlm.nih.gov/geo), and data regarding human RBPs were integrated from SONAR, XRNAX, and CARIC results. We identified modules associated with prognosis using weighted gene co-expression network analysis (WGCNA) and performed functional enrichment analysis. Univariate and least absolute shrinkage and selection operator (LASSO) regression analyses were used to identify prognostic RBPs and establish a prediction model. According to the median risk score, we separated patients into high- and low-risk groups and investigated the differences in immune cell infiltration, somatic mutations, and gene set enrichment. Univariate and multivariate regression analyses were used to identify prognostic factors for HCC. A nomogram was constructed, and its performance was evaluated with calibration curves.Sixteen RBPs (MEX3A, TTK, MRPL53, IQGAP3, PFN2, IMPDH1, TCOF1, DYNC1LI1, EIF2B4, NOL10, GNL2, EIF1B, PSMD1, AHSA1, SEC61A1, and YBX1) were identified as prognostic genes, and a prognostic model was established. Survival analysis indicated that the model had good predictive performance and that a high-risk score was significantly related to a poor prognosis. Additionally, there were significant differences in immune cell infiltration, somatic mutations, and gene set enrichment between the high- and low-risk groups. Univariate and multivariate regression analyses indicated that the RBP-based signature was an independent prognostic factor for HCC. The nomogram based on 16 RBPs performed well in predicting the overall survival of HCC patients.The RBP-based signature is an independent prognostic factor for HCC, and this study could provide an innovative method for analyzing prognostic biomarkers and therapeutic targets for HCC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助林二车娜姆采纳,获得30
刚刚
隐形飞雪完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
1秒前
DDEEE完成签到,获得积分10
2秒前
2秒前
Huanglj完成签到,获得积分10
2秒前
小小发布了新的文献求助30
2秒前
2秒前
小鱼马发布了新的文献求助10
2秒前
朱小燕发布了新的文献求助10
3秒前
weixun完成签到,获得积分10
3秒前
wwf发布了新的文献求助30
3秒前
勤奋弋完成签到,获得积分10
4秒前
希望天下0贩的0应助www采纳,获得10
4秒前
Moxley完成签到,获得积分10
4秒前
一大个太阳完成签到,获得积分10
4秒前
yyyyyy发布了新的文献求助10
4秒前
Chenly发布了新的文献求助30
4秒前
chiron完成签到,获得积分10
5秒前
蔡小娜完成签到,获得积分20
5秒前
Yixin_Niu发布了新的文献求助50
5秒前
gulu发布了新的文献求助10
5秒前
5秒前
Eina发布了新的文献求助10
5秒前
DDEEE发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
向上完成签到 ,获得积分10
7秒前
吃葡萄不吐完成签到,获得积分10
7秒前
权_888发布了新的文献求助10
8秒前
无辜的翠安完成签到,获得积分10
9秒前
9秒前
weixun发布了新的文献求助10
9秒前
卷aaaa发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894