根际
生物肥料
根瘤菌
微生物菌剂
细菌
固氮
固氮酶
蟋蟀草属
溶磷菌
维格纳
生物
园艺
化学
根际细菌
食品科学
植物
农学
接种
遗传学
小米
作者
Rasheeda Shameem M,Mary Isabella Sonali J,P. Senthil Kumar,Gayathri Rangasamy,Veena Gayathri Krishnaswamy,V. Parthasarathy
标识
DOI:10.1016/j.envres.2022.115200
摘要
The nitrogen-fixing bacterium has great prospects in replacing synthetic fertilizers with biofertilizers for plant growth. It would be a useful tool in eradicating chemical fertilizers from use. Five nitrogen-fixing bacteria were isolated from the Tea and Groundnut rhizosphere soil out of which RSKVG 02 proved to be the best. The optimized condition of RSKVG 02 was found to be pH 7 at 30 °C utilizing 1% glucose and 0.05% ammonium sulfate as the sole carbon and nitrogen source. Plant growth-promoting traits such as IAA and ammonia were estimated to be 82.97 ± 0.01254a μg/ml and 80.49 ± 0.23699a mg/ml respectively. Additionally, their phosphate and potassium solubilization efficiency were evaluated to be 46.69 ± 0.00125 b mg/ml and 50.29 ± 0.000266 mg/ml. Morphological, and biochemical methods characterized the isolated bacterial culture, and molecularly identified by 16 S rRNA sequencing as Rhizobium mayense. The isolate was further tested for its effects on the growth of Finger millet (Eleusine coracana) and Green gram (Vigna radiata) under pot conditions. The pot study experiments indicated that the bacterial isolates used as bio inoculants increased the total plant growth compared to the control and their dry weight showed similar results. The chlorophyll content of Green gram and Finger millet was estimated to be 19.54 ± 0.2784a mg/L and 15.3 ± 0.0035 mg/L which suggested that Rhizobium sp. Possesses high nitrogenase activity. The enzyme activity proved to use this bacterium as a biofertilizer property to enhance soil fertility, efficient farming, and an alternative chemical fertilizer. Therefore, Rhizobium mayense can be potentially used as an efficient biofertilizer for crop production and increase yield and soil fertility.
科研通智能强力驱动
Strongly Powered by AbleSci AI