Factoring 3D Convolutions for Medical Images by Depth-wise Dependencies-induced Adaptive Attention

计算机科学 规范化(社会学) 卷积神经网络 核(代数) 参数化复杂度 人工智能 卷积(计算机科学) 矩阵分解 计算复杂性理论 联营 矩阵范数 非负矩阵分解 模式识别(心理学) 算法 人工神经网络 数学 组合数学 物理 量子力学 社会学 特征向量 人类学
作者
Na Zeng,Jiansheng Fang,Xingyue Wang,Xiaoxi Lu,Jingqi Huang,Hanpei Miao,Jiang Liu
标识
DOI:10.1109/bibm55620.2022.9995195
摘要

It turns out that convolutional neural networks (CNNs) have excellent medical image processing capabilities. Hence, effectively and efficiently deploying CNNs on devices with varying computing power to make computer-aided diagnosis puts on the agenda. However, it is a dilemma to balance the limited computing resources and model complexity. Previously, we proposed factorized convolution with spectral normalization (FConvSN) to mitigate the bottleneck of deploying CNNs for 2D medical images. But due to the cube structure of 3D convolutional kernels, it does not work well for 3D medical images. Directly flattening 3D kernels to 2D weights for matrix factorization may undermine the learning ability along depth-wise, resulting in the loss of depth information and the decline of model performance. To this end, we factorize a 3D convolutional kernel to 2D weight matrices with depth-wise dimensions, then assign an attentive score for each 2D weight matrix by a depth-wise dependencies-induced adaptive attention block (AA). AA with a temperature hyper-parameter helps convolution kernel to better capture depth-wise dependencies in 3D medical images, improving its learning ability along the depth direction. We term this novel factorized convolution as FConvAA used for compressing model complexity without impairing the depth-wise expressivity. We also impose spectral normalization (SN) for FConvAA to constrain spectral norm-wise weights. We conduct extensive experiments on the public lung CT dataset LUNA16 and the private retina OCT dataset to demonstrate the effectiveness and feasibility of our FConvAA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陆千万发布了新的文献求助10
刚刚
花花花花发布了新的文献求助10
刚刚
谢谢sang发布了新的文献求助10
刚刚
yyj完成签到,获得积分10
1秒前
4秒前
yao完成签到,获得积分10
5秒前
vv发布了新的文献求助10
5秒前
5秒前
6秒前
Jasper应助hhh采纳,获得10
6秒前
呼啦呼啦发布了新的文献求助10
6秒前
Lucas应助123采纳,获得10
7秒前
陆千万完成签到,获得积分10
7秒前
7秒前
zzzzzzzzzzzzy完成签到,获得积分10
9秒前
小易发布了新的文献求助10
9秒前
9秒前
PENG举报欣喜的人龙求助涉嫌违规
10秒前
科研通AI5应助芒果糯米饭采纳,获得10
10秒前
10秒前
11秒前
许坤发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
落后妖妖完成签到 ,获得积分10
14秒前
Orange应助茱萸采纳,获得10
14秒前
NexusExplorer应助lw采纳,获得10
14秒前
feather完成签到,获得积分10
15秒前
南风平发布了新的文献求助10
16秒前
jayskang发布了新的文献求助10
16秒前
FashionBoy应助zty123采纳,获得10
17秒前
以行践言应助999采纳,获得10
18秒前
北北斤发布了新的文献求助10
18秒前
冷静惜文发布了新的文献求助10
18秒前
上官若男应助xiaoran采纳,获得10
18秒前
王金铭完成签到,获得积分10
19秒前
20秒前
大模型应助无敌z采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515965
求助须知:如何正确求助?哪些是违规求助? 3098115
关于积分的说明 9238144
捐赠科研通 2793134
什么是DOI,文献DOI怎么找? 1532862
邀请新用户注册赠送积分活动 712391
科研通“疑难数据库(出版商)”最低求助积分说明 707256