A detection approach for late-autumn shoots of litchi based on unmanned aerial vehicle (UAV) remote sensing

开枪 果园 遥感 人工智能 计算机科学 地理 园艺 生物
作者
Juntao Liang,Xin Chen,Changjiang Liang,Teng Long,Xinyu Tang,Zhenmiao Shi,Zhou Ming,Jing Zhao,Yubin Lan,Yongbing Long
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:204: 107535-107535 被引量:18
标识
DOI:10.1016/j.compag.2022.107535
摘要

Litchi is one of the most common economic fruits in southern China, however, the growth of late-autumn shoots of litchi hinders flower bud differentiation and reduces yield of fruit. The early identification of the late-autumn shoots is of great significance for orchard management to control shoots and then increase fruit yield. At present, the identification of late-autumn shoots still relies on manual methods, which is not suitable for smart orchard management in a large area due to low recognition efficiency and high subjectivity. Therefore, a convenient, fast and cost-effective method is urgently needed. In response to this problem, the paper proposes a method based on the combination of unmanned aerial vehicle (UAV) remote sensing and object detection algorithm to detect late-autumn shoots. For this purpose, a remote sensing dataset of late-autumn shoots of litchi is first constructed by UAV. An improved YOLOv5 algorithm called YOLOv5-SBiC is then developed for late-autumn shoots identification. In the YOLOv5-SBiC algorithm, the transformer module is introduced to speed up the convergence of the network and improve detection accuracy, the attention mechanism module is employed to help the model extracting details, and BiFPN is used to better solve the multi-scale problem in detecting and then improve the recognition effect of small-sized objects. In addition, CIOU is selected as the loss function of bounding boxes regression to achieve high-precision localization of the boxes. The test results demonstrate that the recognition accuracy of YOLOv5-SBiC reaches a relatively high value of 79.6%, which is 4.0% higher than that (75.6%) of the original YOLOv5 algorithm and 15.9% higher than that (63.7%) of the pure transformer algorithm. It’s also demonstrated that YOLOv5-SBiC is more competitive than the mainstream target detection algorithms in the dataset of late-autumn shoots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
baobaonaixi完成签到,获得积分10
1秒前
赘婿应助jasy采纳,获得10
1秒前
2秒前
汉堡包应助郭初一采纳,获得10
2秒前
bofu发布了新的文献求助10
3秒前
汉堡包应助端庄的天宇采纳,获得10
4秒前
RW应助zry采纳,获得20
4秒前
4秒前
aizhujun完成签到,获得积分10
4秒前
俊逸留下了新的社区评论
4秒前
dyj完成签到,获得积分10
5秒前
shuang0116应助宝贝采纳,获得10
5秒前
SemiConduAG完成签到,获得积分10
5秒前
5秒前
沉默士萧发布了新的文献求助10
5秒前
5秒前
6秒前
那些年4588发布了新的文献求助10
6秒前
qing完成签到 ,获得积分10
7秒前
7秒前
车轱辘发布了新的文献求助10
7秒前
无奈敏发布了新的文献求助10
7秒前
熊出没之光头强666完成签到,获得积分10
7秒前
7秒前
小小邱完成签到,获得积分10
7秒前
8秒前
8秒前
陈朝鑫完成签到,获得积分10
8秒前
王耀发布了新的文献求助10
10秒前
10秒前
开心小猪发布了新的文献求助10
10秒前
慕青应助清蒸鱼吖采纳,获得10
10秒前
bofu发布了新的文献求助10
11秒前
微笑涔雨应助Singularity采纳,获得20
11秒前
11秒前
Iris发布了新的文献求助10
12秒前
12秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227431
求助须知:如何正确求助?哪些是违规求助? 2875461
关于积分的说明 8191338
捐赠科研通 2542765
什么是DOI,文献DOI怎么找? 1373026
科研通“疑难数据库(出版商)”最低求助积分说明 646618
邀请新用户注册赠送积分活动 621099