A detection approach for late-autumn shoots of litchi based on unmanned aerial vehicle (UAV) remote sensing

开枪 果园 遥感 人工智能 计算机科学 地理 园艺 生物
作者
Juntao Liang,Xin Chen,Changjiang Liang,Teng Long,Xinyu Tang,Zhenmiao Shi,Zhou Ming,Jing Zhao,Yubin Lan,Yongbing Long
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:204: 107535-107535 被引量:18
标识
DOI:10.1016/j.compag.2022.107535
摘要

Litchi is one of the most common economic fruits in southern China, however, the growth of late-autumn shoots of litchi hinders flower bud differentiation and reduces yield of fruit. The early identification of the late-autumn shoots is of great significance for orchard management to control shoots and then increase fruit yield. At present, the identification of late-autumn shoots still relies on manual methods, which is not suitable for smart orchard management in a large area due to low recognition efficiency and high subjectivity. Therefore, a convenient, fast and cost-effective method is urgently needed. In response to this problem, the paper proposes a method based on the combination of unmanned aerial vehicle (UAV) remote sensing and object detection algorithm to detect late-autumn shoots. For this purpose, a remote sensing dataset of late-autumn shoots of litchi is first constructed by UAV. An improved YOLOv5 algorithm called YOLOv5-SBiC is then developed for late-autumn shoots identification. In the YOLOv5-SBiC algorithm, the transformer module is introduced to speed up the convergence of the network and improve detection accuracy, the attention mechanism module is employed to help the model extracting details, and BiFPN is used to better solve the multi-scale problem in detecting and then improve the recognition effect of small-sized objects. In addition, CIOU is selected as the loss function of bounding boxes regression to achieve high-precision localization of the boxes. The test results demonstrate that the recognition accuracy of YOLOv5-SBiC reaches a relatively high value of 79.6%, which is 4.0% higher than that (75.6%) of the original YOLOv5 algorithm and 15.9% higher than that (63.7%) of the pure transformer algorithm. It’s also demonstrated that YOLOv5-SBiC is more competitive than the mainstream target detection algorithms in the dataset of late-autumn shoots.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
NexusExplorer应助Sue采纳,获得10
刚刚
天天快乐应助粗心的从露采纳,获得10
刚刚
情怀应助浩浩乐扣采纳,获得10
刚刚
1秒前
ding应助HAOHAO采纳,获得10
1秒前
2秒前
Orange应助XXX采纳,获得10
2秒前
思源应助清风采纳,获得10
2秒前
热心市民小红花给热心市民小红花的求助进行了留言
2秒前
量子星尘发布了新的文献求助10
3秒前
欧克欧克发布了新的文献求助10
3秒前
lin完成签到,获得积分10
4秒前
dudududu完成签到,获得积分10
4秒前
5秒前
Richard发布了新的文献求助10
5秒前
星辰大海应助冰苏打采纳,获得10
5秒前
积极诗霜完成签到,获得积分10
5秒前
chx123发布了新的文献求助10
6秒前
我是老大应助qiaoyun采纳,获得10
6秒前
刘文静完成签到,获得积分10
7秒前
尽落发布了新的文献求助10
8秒前
8秒前
9秒前
永远永远完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
合适的乐儿完成签到,获得积分10
11秒前
sswbzh应助风清扬采纳,获得50
12秒前
12秒前
12秒前
正念完成签到,获得积分10
13秒前
Orange应助心灵美的小伙采纳,获得10
13秒前
13秒前
13秒前
13秒前
寒水沉烟完成签到,获得积分10
13秒前
13秒前
充电宝应助九九采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894