A detection approach for late-autumn shoots of litchi based on unmanned aerial vehicle (UAV) remote sensing

开枪 果园 遥感 人工智能 计算机科学 地理 园艺 生物
作者
Juntao Liang,Xin Chen,Changjiang Liang,Teng Long,Xinyu Tang,Zhenmiao Shi,Zhou Ming,Jing Zhao,Yubin Lan,Yongbing Long
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:204: 107535-107535 被引量:18
标识
DOI:10.1016/j.compag.2022.107535
摘要

Litchi is one of the most common economic fruits in southern China, however, the growth of late-autumn shoots of litchi hinders flower bud differentiation and reduces yield of fruit. The early identification of the late-autumn shoots is of great significance for orchard management to control shoots and then increase fruit yield. At present, the identification of late-autumn shoots still relies on manual methods, which is not suitable for smart orchard management in a large area due to low recognition efficiency and high subjectivity. Therefore, a convenient, fast and cost-effective method is urgently needed. In response to this problem, the paper proposes a method based on the combination of unmanned aerial vehicle (UAV) remote sensing and object detection algorithm to detect late-autumn shoots. For this purpose, a remote sensing dataset of late-autumn shoots of litchi is first constructed by UAV. An improved YOLOv5 algorithm called YOLOv5-SBiC is then developed for late-autumn shoots identification. In the YOLOv5-SBiC algorithm, the transformer module is introduced to speed up the convergence of the network and improve detection accuracy, the attention mechanism module is employed to help the model extracting details, and BiFPN is used to better solve the multi-scale problem in detecting and then improve the recognition effect of small-sized objects. In addition, CIOU is selected as the loss function of bounding boxes regression to achieve high-precision localization of the boxes. The test results demonstrate that the recognition accuracy of YOLOv5-SBiC reaches a relatively high value of 79.6%, which is 4.0% higher than that (75.6%) of the original YOLOv5 algorithm and 15.9% higher than that (63.7%) of the pure transformer algorithm. It’s also demonstrated that YOLOv5-SBiC is more competitive than the mainstream target detection algorithms in the dataset of late-autumn shoots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷波er应助SteveRogers采纳,获得10
刚刚
刚刚
kkdsseed应助外向的忆霜采纳,获得30
1秒前
想把太阳揣兜里应助Hh采纳,获得10
1秒前
姣妹崽完成签到,获得积分10
1秒前
斯文败类应助lieditongxu采纳,获得10
2秒前
大模型应助橙子采纳,获得10
2秒前
2秒前
3秒前
充电宝应助li采纳,获得10
3秒前
研友_Y59685发布了新的文献求助10
3秒前
dwx发布了新的文献求助10
3秒前
4秒前
glimmer发布了新的文献求助10
4秒前
4秒前
xxl完成签到,获得积分10
5秒前
666发布了新的文献求助30
5秒前
5秒前
Hello应助有一个盆采纳,获得10
5秒前
打打应助11111采纳,获得10
5秒前
小鱼发布了新的文献求助10
5秒前
young_lifestyle应助1111采纳,获得10
6秒前
99发布了新的文献求助10
6秒前
嵤麈应助LH采纳,获得10
8秒前
汉堡包应助乔巴采纳,获得10
8秒前
乐乐应助Carlo采纳,获得10
8秒前
8秒前
8秒前
ZYC发布了新的文献求助10
9秒前
外向的忆霜完成签到,获得积分10
9秒前
今后应助希zi采纳,获得10
9秒前
9秒前
9秒前
ZXCVB发布了新的文献求助10
9秒前
汉堡包应助gdd采纳,获得10
9秒前
abc完成签到,获得积分10
9秒前
Louis完成签到,获得积分10
10秒前
10秒前
dwx完成签到,获得积分20
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958693
求助须知:如何正确求助?哪些是违规求助? 3504939
关于积分的说明 11121216
捐赠科研通 3236311
什么是DOI,文献DOI怎么找? 1788726
邀请新用户注册赠送积分活动 871307
科研通“疑难数据库(出版商)”最低求助积分说明 802691