已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Short-term rainfall forecasting using cumulative precipitation fields from station data: a probabilistic machine learning approach

临近预报 概率逻辑 计算机科学 累积分布函数 人工神经网络 降水 期限(时间) 事件(粒子物理) 领域(数学) 环境科学 气象学 机器学习 人工智能 统计 概率密度函数 数学 地理 物理 量子力学 纯数学
作者
Dina Pirone,Luigi Cimorelli,Giuseppe Del Giudice,Domenico Pianese
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:617: 128949-128949 被引量:47
标识
DOI:10.1016/j.jhydrol.2022.128949
摘要

Rainfall nowcasting supports emergency decision-making in hydrological, agricultural, and economical sectors. However, short-term prediction is challenging because meteorological variables are strongly interconnected and rapidly change during an event. Since machine learning do not require any previous physical assumption, this study investigates their ability to provide reliable and quick forecasts. This paper proposes a machine learning model for probabilistic rainfall nowcasting at 10 min intervals for short lead times - from 30 min up to 6 h. The model employs cumulative rainfall fields from station data as inputs for a feed forward neural network to predict rainfall interval and the corresponding probability of occurrence. Cumulative rainfall depths from station data were used to overcome the lack of temporal memory of the feed forward neural networks. In this way, using only the current rain field as input, the model exploited pattern recognition techniques combining both temporal - cumulative rainfall depth - and spatial - cumulative rainfall field – information. Based on 359 rain events observed in an area of 1619 km2 in Southern Italy, 95 machine learning models were independently trained for 19 recording stations and for each target lead-time (30, 60, 120, 180 and 360 min). Comprehensive nowcasts verification was performed to analyse the reliability of probabilistic nowcasts using both continuous (RMSE and RAE) and categorical (POD, FAR and CSI) indicators. The performance of the models was also compared with the results of Eulerian Persistence. All the models produced consistent nowcasts and learnt the complex relationship describing space–time rainfall evolution. As expected, predictive accuracy gradually decreased as the lead-time increase, according to physically based models. Results showed that the use of both temporal and spatial information enables the model to predict short-term rainfall using only the current measurements as input, resulting in a rapid, easily replicable and convenient nowcasting approach. The procedure is an effective way to predict multi-step rainfall fields and is suitable for operational early warning system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵鼠标发布了新的文献求助10
1秒前
田様应助堀江真夏采纳,获得10
3秒前
123456完成签到,获得积分10
3秒前
orixero应助迅速怜寒采纳,获得30
4秒前
安安完成签到 ,获得积分10
5秒前
精明云朵完成签到 ,获得积分10
6秒前
9秒前
子焱完成签到,获得积分10
9秒前
落后煜城完成签到,获得积分10
10秒前
情怀应助机灵鼠标采纳,获得10
12秒前
zkji发布了新的文献求助10
14秒前
123发布了新的文献求助10
17秒前
Cccc小懒发布了新的文献求助10
19秒前
纪梵希完成签到,获得积分10
20秒前
落后煜城发布了新的文献求助10
22秒前
隐形曼青应助zkji采纳,获得10
22秒前
二十发布了新的文献求助30
22秒前
24秒前
jinni完成签到,获得积分10
24秒前
renpp822发布了新的文献求助10
26秒前
今后应助科研通管家采纳,获得10
26秒前
Akim应助科研通管家采纳,获得10
26秒前
共享精神应助科研通管家采纳,获得10
26秒前
Akim应助科研通管家采纳,获得80
26秒前
26秒前
shinysparrow应助科研通管家采纳,获得200
26秒前
Fandebiao应助科研通管家采纳,获得10
26秒前
Akim应助科研通管家采纳,获得10
26秒前
纪梵希发布了新的文献求助10
27秒前
香蕉觅云应助Cuinewb采纳,获得30
27秒前
堀江真夏发布了新的文献求助10
28秒前
周周完成签到,获得积分10
34秒前
Akim应助mozhi采纳,获得10
36秒前
情怀应助renpp822采纳,获得10
36秒前
sam发布了新的文献求助10
36秒前
36秒前
38秒前
40秒前
深情安青应助文天采纳,获得10
40秒前
41秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161905
求助须知:如何正确求助?哪些是违规求助? 2813139
关于积分的说明 7898729
捐赠科研通 2472140
什么是DOI,文献DOI怎么找? 1316366
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129