Short-term rainfall forecasting using cumulative precipitation fields from station data: a probabilistic machine learning approach

临近预报 概率逻辑 计算机科学 累积分布函数 人工神经网络 降水 期限(时间) 事件(粒子物理) 领域(数学) 环境科学 气象学 机器学习 人工智能 统计 概率密度函数 数学 地理 量子力学 物理 纯数学
作者
Dina Pirone,Luigi Cimorelli,Giuseppe Del Giudice,Domenico Pianese
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:617: 128949-128949 被引量:74
标识
DOI:10.1016/j.jhydrol.2022.128949
摘要

Rainfall nowcasting supports emergency decision-making in hydrological, agricultural, and economical sectors. However, short-term prediction is challenging because meteorological variables are strongly interconnected and rapidly change during an event. Since machine learning do not require any previous physical assumption, this study investigates their ability to provide reliable and quick forecasts. This paper proposes a machine learning model for probabilistic rainfall nowcasting at 10 min intervals for short lead times - from 30 min up to 6 h. The model employs cumulative rainfall fields from station data as inputs for a feed forward neural network to predict rainfall interval and the corresponding probability of occurrence. Cumulative rainfall depths from station data were used to overcome the lack of temporal memory of the feed forward neural networks. In this way, using only the current rain field as input, the model exploited pattern recognition techniques combining both temporal - cumulative rainfall depth - and spatial - cumulative rainfall field – information. Based on 359 rain events observed in an area of 1619 km2 in Southern Italy, 95 machine learning models were independently trained for 19 recording stations and for each target lead-time (30, 60, 120, 180 and 360 min). Comprehensive nowcasts verification was performed to analyse the reliability of probabilistic nowcasts using both continuous (RMSE and RAE) and categorical (POD, FAR and CSI) indicators. The performance of the models was also compared with the results of Eulerian Persistence. All the models produced consistent nowcasts and learnt the complex relationship describing space–time rainfall evolution. As expected, predictive accuracy gradually decreased as the lead-time increase, according to physically based models. Results showed that the use of both temporal and spatial information enables the model to predict short-term rainfall using only the current measurements as input, resulting in a rapid, easily replicable and convenient nowcasting approach. The procedure is an effective way to predict multi-step rainfall fields and is suitable for operational early warning system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
Owen应助Brot_12采纳,获得30
2秒前
3秒前
研友_VZG7GZ应助那年的伟哥采纳,获得10
3秒前
wanci应助蝌蚪采纳,获得10
4秒前
传统的纸飞机完成签到 ,获得积分10
5秒前
徐洋发布了新的文献求助10
5秒前
玖Nine发布了新的文献求助10
5秒前
畅快慕蕊发布了新的文献求助10
7秒前
7秒前
balabala发布了新的文献求助10
8秒前
9秒前
李健的小迷弟应助TJJ采纳,获得10
10秒前
10秒前
Orange应助最佳采纳,获得10
10秒前
小天狼星完成签到,获得积分10
11秒前
梧桐完成签到,获得积分10
15秒前
17秒前
kgf发布了新的文献求助10
17秒前
李健应助小DRA采纳,获得10
20秒前
量子星尘发布了新的文献求助10
23秒前
文静煜城完成签到 ,获得积分10
25秒前
Liufgui应助橘子采纳,获得20
26秒前
大秦完成签到,获得积分10
29秒前
NexusExplorer应助徐洋采纳,获得10
29秒前
33秒前
34秒前
积极的沂完成签到,获得积分10
36秒前
大个应助好想睡大觉采纳,获得10
37秒前
小郭子发布了新的文献求助10
37秒前
Mr.Jian完成签到,获得积分10
38秒前
素简发布了新的文献求助10
39秒前
博修发布了新的文献求助10
40秒前
41秒前
众筹昵称完成签到,获得积分10
43秒前
正好完成签到,获得积分10
45秒前
TJJ发布了新的文献求助10
45秒前
素简完成签到,获得积分10
46秒前
OKOK发布了新的文献求助10
46秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979648
求助须知:如何正确求助?哪些是违规求助? 3523618
关于积分的说明 11218147
捐赠科研通 3261119
什么是DOI,文献DOI怎么找? 1800416
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807167