Towards sweetness classification of orange cultivars using short-wave NIR spectroscopy

甜蜜 可滴定酸 糖度 橙色(颜色) 数学 栽培 偏最小二乘回归 相关系数 化学 人工智能 食品科学 园艺 统计 计算机科学 生物
作者
Ayesha Zeb,Waqar S. Qureshi,Abdul Ghafoor,Amanullah Malik,Muhammad Imran,Alina Mirza,Mohsin I. Tiwana,Eisa Alanazi
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:5
标识
DOI:10.1038/s41598-022-27297-2
摘要

Abstract The global orange industry constantly faces new technical challenges to meet consumer demands for quality fruits. Instead of traditional subjective fruit quality assessment methods, the interest in the horticulture industry has increased in objective, quantitative, and non-destructive assessment methods. Oranges have a thick peel which makes their non-destructive quality assessment challenging. This paper evaluates the potential of short-wave NIR spectroscopy and direct sweetness classification approach for Pakistani cultivars of orange, i.e., Red-Blood, Mosambi, and Succari. The correlation between quality indices, i.e., Brix, titratable acidity (TA), Brix: TA and BrimA (Brix minus acids), sensory assessment of the fruit, and short-wave NIR spectra, is analysed. Mix cultivar oranges are classified as sweet, mixed, and acidic based on short-wave NIR spectra. Short-wave NIR spectral data were obtained using the industry standard F-750 fruit quality meter (310–1100 nm). Reference Brix and TA measurements were taken using standard destructive testing methods. Reference taste labels i.e., sweet, mix, and acidic, were acquired through sensory evaluation of samples. For indirect fruit classification, partial least squares regression models were developed for Brix, TA, Brix: TA, and BrimA estimation with a correlation coefficient of 0.57, 0.73, 0.66, and 0.55, respectively, on independent test data. The ensemble classifier achieved 81.03% accuracy for three classes (sweet, mixed, and acidic) classification on independent test data for direct fruit classification. A good correlation between NIR spectra and sensory assessment is observed as compared to quality indices. A direct classification approach is more suitable for a machine-learning-based orange sweetness classification using NIR spectroscopy than the estimation of quality indices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
keal完成签到,获得积分10
1秒前
1秒前
上官若男应助可爱向卉采纳,获得10
2秒前
3秒前
暴风雨中的海完成签到,获得积分10
5秒前
曹曹关注了科研通微信公众号
5秒前
冷静冰双发布了新的文献求助10
6秒前
fuchao发布了新的文献求助10
6秒前
无奈若雁完成签到 ,获得积分10
7秒前
fifteen应助shirley采纳,获得10
7秒前
婷婷应助张秋雨采纳,获得10
7秒前
单纯夏烟完成签到 ,获得积分10
7秒前
8秒前
9秒前
思源应助阔达白筠采纳,获得10
9秒前
知北完成签到,获得积分10
10秒前
苏碧萱完成签到,获得积分10
11秒前
四季养生人完成签到 ,获得积分10
11秒前
顺顺发布了新的文献求助10
11秒前
Jason完成签到,获得积分10
12秒前
苏碧萱发布了新的文献求助10
14秒前
勤恳幻然发布了新的文献求助10
14秒前
还不错完成签到,获得积分10
15秒前
阿莱克修斯完成签到,获得积分20
16秒前
17秒前
18秒前
精明的沅完成签到,获得积分20
19秒前
bubble完成签到 ,获得积分10
20秒前
林思完成签到,获得积分10
20秒前
21秒前
慕青应助lyx采纳,获得10
23秒前
浅夏初晴完成签到 ,获得积分10
23秒前
可爱向卉发布了新的文献求助10
23秒前
24秒前
ding应助ysws采纳,获得10
24秒前
冷静冰双完成签到,获得积分20
25秒前
李爱国应助勤恳幻然采纳,获得10
25秒前
朱豪豪发布了新的文献求助10
25秒前
喂喂巍完成签到 ,获得积分10
26秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164313
求助须知:如何正确求助?哪些是违规求助? 2815082
关于积分的说明 7907553
捐赠科研通 2474643
什么是DOI,文献DOI怎么找? 1317610
科研通“疑难数据库(出版商)”最低求助积分说明 631870
版权声明 602228