Towards sweetness classification of orange cultivars using short-wave NIR spectroscopy

甜蜜 可滴定酸 糖度 橙色(颜色) 数学 栽培 偏最小二乘回归 相关系数 化学 人工智能 食品科学 园艺 统计 计算机科学 生物
作者
Ayesha Zeb,Waqar S. Qureshi,Abdul Ghafoor,Amanullah Malik,Muhammad Imran,Alina Mirza,Mohsin I. Tiwana,Eisa Alanazi
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:5
标识
DOI:10.1038/s41598-022-27297-2
摘要

Abstract The global orange industry constantly faces new technical challenges to meet consumer demands for quality fruits. Instead of traditional subjective fruit quality assessment methods, the interest in the horticulture industry has increased in objective, quantitative, and non-destructive assessment methods. Oranges have a thick peel which makes their non-destructive quality assessment challenging. This paper evaluates the potential of short-wave NIR spectroscopy and direct sweetness classification approach for Pakistani cultivars of orange, i.e., Red-Blood, Mosambi, and Succari. The correlation between quality indices, i.e., Brix, titratable acidity (TA), Brix: TA and BrimA (Brix minus acids), sensory assessment of the fruit, and short-wave NIR spectra, is analysed. Mix cultivar oranges are classified as sweet, mixed, and acidic based on short-wave NIR spectra. Short-wave NIR spectral data were obtained using the industry standard F-750 fruit quality meter (310–1100 nm). Reference Brix and TA measurements were taken using standard destructive testing methods. Reference taste labels i.e., sweet, mix, and acidic, were acquired through sensory evaluation of samples. For indirect fruit classification, partial least squares regression models were developed for Brix, TA, Brix: TA, and BrimA estimation with a correlation coefficient of 0.57, 0.73, 0.66, and 0.55, respectively, on independent test data. The ensemble classifier achieved 81.03% accuracy for three classes (sweet, mixed, and acidic) classification on independent test data for direct fruit classification. A good correlation between NIR spectra and sensory assessment is observed as compared to quality indices. A direct classification approach is more suitable for a machine-learning-based orange sweetness classification using NIR spectroscopy than the estimation of quality indices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
在水一方应助甜甜的金鑫采纳,获得10
2秒前
2秒前
3秒前
3秒前
4秒前
青青完成签到,获得积分10
4秒前
朝暮K兮发布了新的文献求助10
4秒前
小马甲应助年轻的书本采纳,获得10
5秒前
玉鱼儿发布了新的文献求助10
7秒前
大力访波应助bbb采纳,获得10
8秒前
521发布了新的文献求助10
10秒前
zjm完成签到,获得积分10
11秒前
13秒前
14秒前
14秒前
小二郎应助tttp采纳,获得10
15秒前
chengqin完成签到 ,获得积分10
15秒前
孤独的电话完成签到,获得积分10
15秒前
15秒前
Hello应助快乐的小康采纳,获得10
16秒前
西风惊绿完成签到,获得积分10
17秒前
18秒前
山东人在南京完成签到 ,获得积分10
18秒前
zz完成签到,获得积分10
18秒前
kingwill举报黎明求助涉嫌违规
19秒前
dudu不吃榴莲完成签到,获得积分10
19秒前
坚强的雯发布了新的文献求助10
19秒前
ED应助Autoimmune采纳,获得10
20秒前
21秒前
23秒前
Owen应助521采纳,获得10
23秒前
lalala完成签到,获得积分10
24秒前
STZHEN完成签到,获得积分10
25秒前
25秒前
homo完成签到,获得积分10
26秒前
Lucas应助单纯雨琴采纳,获得10
26秒前
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954414
求助须知:如何正确求助?哪些是违规求助? 3500373
关于积分的说明 11099295
捐赠科研通 3230866
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801689