已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Towards sweetness classification of orange cultivars using short-wave NIR spectroscopy

甜蜜 可滴定酸 糖度 橙色(颜色) 数学 栽培 偏最小二乘回归 相关系数 化学 人工智能 食品科学 园艺 统计 计算机科学 生物
作者
Ayesha Zeb,Waqar S. Qureshi,Abdul Ghafoor,Amanullah Malik,Muhammad Imran,Alina Mirza,Mohsin I. Tiwana,Eisa Alanazi
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:5
标识
DOI:10.1038/s41598-022-27297-2
摘要

Abstract The global orange industry constantly faces new technical challenges to meet consumer demands for quality fruits. Instead of traditional subjective fruit quality assessment methods, the interest in the horticulture industry has increased in objective, quantitative, and non-destructive assessment methods. Oranges have a thick peel which makes their non-destructive quality assessment challenging. This paper evaluates the potential of short-wave NIR spectroscopy and direct sweetness classification approach for Pakistani cultivars of orange, i.e., Red-Blood, Mosambi, and Succari. The correlation between quality indices, i.e., Brix, titratable acidity (TA), Brix: TA and BrimA (Brix minus acids), sensory assessment of the fruit, and short-wave NIR spectra, is analysed. Mix cultivar oranges are classified as sweet, mixed, and acidic based on short-wave NIR spectra. Short-wave NIR spectral data were obtained using the industry standard F-750 fruit quality meter (310–1100 nm). Reference Brix and TA measurements were taken using standard destructive testing methods. Reference taste labels i.e., sweet, mix, and acidic, were acquired through sensory evaluation of samples. For indirect fruit classification, partial least squares regression models were developed for Brix, TA, Brix: TA, and BrimA estimation with a correlation coefficient of 0.57, 0.73, 0.66, and 0.55, respectively, on independent test data. The ensemble classifier achieved 81.03% accuracy for three classes (sweet, mixed, and acidic) classification on independent test data for direct fruit classification. A good correlation between NIR spectra and sensory assessment is observed as compared to quality indices. A direct classification approach is more suitable for a machine-learning-based orange sweetness classification using NIR spectroscopy than the estimation of quality indices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liwang9301完成签到,获得积分10
刚刚
聆(*^_^*)完成签到 ,获得积分10
刚刚
1秒前
NKKKKKK发布了新的文献求助10
1秒前
3秒前
熊逍发布了新的文献求助10
4秒前
江枫渔火完成签到 ,获得积分10
7秒前
没见云发布了新的文献求助10
7秒前
尊敬寒松发布了新的文献求助60
11秒前
12秒前
刻苦的冬易完成签到 ,获得积分10
15秒前
脑洞疼应助f1mike110采纳,获得10
15秒前
Orange应助超级野狼采纳,获得10
15秒前
16秒前
pay发布了新的文献求助10
18秒前
19秒前
细心怀亦完成签到 ,获得积分10
23秒前
sssyyy发布了新的文献求助10
24秒前
Guts发布了新的文献求助10
24秒前
29秒前
zl13332完成签到 ,获得积分10
31秒前
shy完成签到,获得积分10
33秒前
量子星尘发布了新的文献求助10
34秒前
34秒前
111发布了新的文献求助10
36秒前
36秒前
39秒前
40秒前
马宁婧完成签到 ,获得积分10
43秒前
柠木完成签到 ,获得积分10
45秒前
Dr.c发布了新的文献求助10
47秒前
48秒前
小明完成签到,获得积分10
49秒前
Airsjz发布了新的文献求助10
54秒前
54秒前
Jemma完成签到 ,获得积分10
55秒前
轨迹应助小彬采纳,获得10
56秒前
Guts发布了新的文献求助10
57秒前
58秒前
DD发布了新的文献求助10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754502
求助须知:如何正确求助?哪些是违规求助? 5487138
关于积分的说明 15380163
捐赠科研通 4893049
什么是DOI,文献DOI怎么找? 2631710
邀请新用户注册赠送积分活动 1579665
关于科研通互助平台的介绍 1535387