Towards sweetness classification of orange cultivars using short-wave NIR spectroscopy

甜蜜 可滴定酸 糖度 橙色(颜色) 数学 栽培 偏最小二乘回归 相关系数 化学 人工智能 食品科学 园艺 统计 计算机科学 生物
作者
Ayesha Zeb,Waqar S. Qureshi,Abdul Ghafoor,Amanullah Malik,Muhammad Imran,Alina Mirza,Mohsin I. Tiwana,Eisa Alanazi
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:5
标识
DOI:10.1038/s41598-022-27297-2
摘要

Abstract The global orange industry constantly faces new technical challenges to meet consumer demands for quality fruits. Instead of traditional subjective fruit quality assessment methods, the interest in the horticulture industry has increased in objective, quantitative, and non-destructive assessment methods. Oranges have a thick peel which makes their non-destructive quality assessment challenging. This paper evaluates the potential of short-wave NIR spectroscopy and direct sweetness classification approach for Pakistani cultivars of orange, i.e., Red-Blood, Mosambi, and Succari. The correlation between quality indices, i.e., Brix, titratable acidity (TA), Brix: TA and BrimA (Brix minus acids), sensory assessment of the fruit, and short-wave NIR spectra, is analysed. Mix cultivar oranges are classified as sweet, mixed, and acidic based on short-wave NIR spectra. Short-wave NIR spectral data were obtained using the industry standard F-750 fruit quality meter (310–1100 nm). Reference Brix and TA measurements were taken using standard destructive testing methods. Reference taste labels i.e., sweet, mix, and acidic, were acquired through sensory evaluation of samples. For indirect fruit classification, partial least squares regression models were developed for Brix, TA, Brix: TA, and BrimA estimation with a correlation coefficient of 0.57, 0.73, 0.66, and 0.55, respectively, on independent test data. The ensemble classifier achieved 81.03% accuracy for three classes (sweet, mixed, and acidic) classification on independent test data for direct fruit classification. A good correlation between NIR spectra and sensory assessment is observed as compared to quality indices. A direct classification approach is more suitable for a machine-learning-based orange sweetness classification using NIR spectroscopy than the estimation of quality indices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
zhou_完成签到,获得积分10
1秒前
科研通AI6应助朴实曼岚采纳,获得10
1秒前
领导范儿应助汀汀采纳,获得10
1秒前
此木本去一应助tomato采纳,获得10
1秒前
2秒前
所所应助Shinchan采纳,获得10
2秒前
BDH完成签到,获得积分20
3秒前
香菜头发布了新的文献求助10
3秒前
林珍发布了新的文献求助10
3秒前
SQDHZJ发布了新的文献求助10
4秒前
GG波波发布了新的文献求助10
6秒前
吴筮发布了新的文献求助10
6秒前
深情安青应助姜萌萌采纳,获得10
7秒前
niumi190完成签到,获得积分0
8秒前
11231发布了新的文献求助10
8秒前
斯文败类应助平淡夏云采纳,获得10
9秒前
gz发布了新的文献求助10
9秒前
10秒前
科研通AI6应助Shinchan采纳,获得10
10秒前
牛牛最棒完成签到 ,获得积分10
10秒前
11秒前
12秒前
量子星尘发布了新的文献求助10
14秒前
小蘑菇应助wtldkz采纳,获得10
14秒前
默默的妙竹完成签到 ,获得积分10
14秒前
裴果发布了新的文献求助10
15秒前
Paul111发布了新的文献求助10
16秒前
17秒前
Jes发布了新的文献求助30
17秒前
19秒前
19秒前
李健应助昭蘅采纳,获得10
19秒前
轻松毒娘完成签到,获得积分10
20秒前
华仔应助吴筮采纳,获得10
21秒前
天天快乐应助合适孤兰采纳,获得10
23秒前
lucinda发布了新的文献求助10
24秒前
24秒前
Yonica完成签到,获得积分10
27秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715