DDAD: Detachable Crowd Density Estimation Assisted Pedestrian Detection

行人检测 计算机科学 行人 人工智能 推论 跳跃式监视 任务(项目管理) 计算机视觉 密度估算 光学(聚焦) 机器学习 工程类 数学 物理 光学 估计员 系统工程 统计 运输工程
作者
Wenxiao Tang,Kun Liu,M. Saad Shakeel,Hao Wang,Wenxiong Kang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:3
标识
DOI:10.1109/tits.2022.3222692
摘要

Detecting pedestrians is a challenging computer vision task, especially in the intelligent transportation system. Mainstream pedestrian detection methods purely utilize information of bounding boxes, which overlooks the role of other valuable attributes (e.g., head, head-shoulders, and keypoints) of pedestrians and leads to sub-optimal solutions. Some works leveraged these valuable attributes with a minor performance improvement at the expense of increased computational complexity during the inference phase. To alleviate this dilemma, we propose a simple yet effective method, namely Detachable crowd Density estimation Assisted pedestrian Detection (DDAD), which leverages the crowd density attributes to assist pedestrian detection in the real-world scenes (e.g., crowded scenes and small-scale pedestrian scenes). The advantage of the crowd density estimation is that it allows the network to focus more on the human head and the small-scale pedestrians, which improves the features representation of pedestrians heavily occluded or far from cameras. Our DDAD works on a principle of multi-task learning and can be seamlessly applied to both one-stage and two-stage pedestrian detectors by equipping them with an extra detachable branch of crowd density estimation. The equipped crowd density estimation branch is trained with the annotations derived from the existing pedestrian bounding box annotations, occurring no extra annotation cost. Moreover, it can be removed during the inference phase without sacrificing the inference speed. Extensive experiments conducted on two challenging datasets, i.e., CrowdHuman and CityPersons, demonstrate that our proposed DDAD achieves a significant improvement upon the state-of-the-art methods. Code is available at https://github.com/SCUT-BIP-Lab/ DDAD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到 ,获得积分10
刚刚
左右关注了科研通微信公众号
1秒前
wanci应助123采纳,获得10
2秒前
酷波er应助oooooooo采纳,获得30
2秒前
英姑应助iso采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
aaa北大街完成签到,获得积分10
2秒前
赘婿应助man采纳,获得30
2秒前
纯真大门发布了新的文献求助20
3秒前
深情安青应助YuanCheng采纳,获得10
3秒前
3秒前
4秒前
CC完成签到 ,获得积分10
4秒前
科研通AI6应助wzt采纳,获得10
4秒前
Erste完成签到 ,获得积分10
4秒前
冯伟娜完成签到,获得积分10
5秒前
5秒前
运气爆彭发布了新的文献求助10
5秒前
5秒前
6秒前
ddddd发布了新的文献求助10
6秒前
完犊子发布了新的文献求助10
6秒前
M二十四完成签到,获得积分10
7秒前
FashionBoy应助豆豆突采纳,获得10
7秒前
苏世完成签到,获得积分20
8秒前
永永远远完成签到,获得积分10
8秒前
zx发布了新的文献求助10
9秒前
9秒前
李健应助细心的岩采纳,获得30
9秒前
小石发布了新的文献求助10
9秒前
哈哈哈哈完成签到,获得积分10
9秒前
不要慌完成签到 ,获得积分10
9秒前
欢喜的火龙果完成签到,获得积分10
9秒前
Stella应助Meng采纳,获得10
10秒前
麦克雷发布了新的文献求助10
10秒前
10秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582496
求助须知:如何正确求助?哪些是违规求助? 4666557
关于积分的说明 14763364
捐赠科研通 4608754
什么是DOI,文献DOI怎么找? 2528816
邀请新用户注册赠送积分活动 1498082
关于科研通互助平台的介绍 1466764