DDAD: Detachable Crowd Density Estimation Assisted Pedestrian Detection

行人检测 计算机科学 行人 人工智能 推论 跳跃式监视 任务(项目管理) 计算机视觉 密度估算 光学(聚焦) 机器学习 工程类 数学 物理 光学 估计员 系统工程 统计 运输工程
作者
Wenxiao Tang,Kun Liu,M. Saad Shakeel,Hao Wang,Wenxiong Kang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:3
标识
DOI:10.1109/tits.2022.3222692
摘要

Detecting pedestrians is a challenging computer vision task, especially in the intelligent transportation system. Mainstream pedestrian detection methods purely utilize information of bounding boxes, which overlooks the role of other valuable attributes (e.g., head, head-shoulders, and keypoints) of pedestrians and leads to sub-optimal solutions. Some works leveraged these valuable attributes with a minor performance improvement at the expense of increased computational complexity during the inference phase. To alleviate this dilemma, we propose a simple yet effective method, namely Detachable crowd Density estimation Assisted pedestrian Detection (DDAD), which leverages the crowd density attributes to assist pedestrian detection in the real-world scenes (e.g., crowded scenes and small-scale pedestrian scenes). The advantage of the crowd density estimation is that it allows the network to focus more on the human head and the small-scale pedestrians, which improves the features representation of pedestrians heavily occluded or far from cameras. Our DDAD works on a principle of multi-task learning and can be seamlessly applied to both one-stage and two-stage pedestrian detectors by equipping them with an extra detachable branch of crowd density estimation. The equipped crowd density estimation branch is trained with the annotations derived from the existing pedestrian bounding box annotations, occurring no extra annotation cost. Moreover, it can be removed during the inference phase without sacrificing the inference speed. Extensive experiments conducted on two challenging datasets, i.e., CrowdHuman and CityPersons, demonstrate that our proposed DDAD achieves a significant improvement upon the state-of-the-art methods. Code is available at https://github.com/SCUT-BIP-Lab/ DDAD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执着的翠梅完成签到 ,获得积分10
刚刚
伶俐的草莓完成签到,获得积分10
1秒前
1秒前
拼搏的飞莲完成签到 ,获得积分10
1秒前
wsq完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
ss完成签到,获得积分10
5秒前
科研通AI2S应助鳗鱼摇伽采纳,获得10
5秒前
BlackP完成签到,获得积分10
6秒前
7秒前
8秒前
华仔应助柯白梦采纳,获得10
8秒前
song完成签到,获得积分10
9秒前
9秒前
文静的芮完成签到,获得积分10
9秒前
CQMZY_2025完成签到,获得积分10
11秒前
Evander发布了新的文献求助10
12秒前
大力出奇迹完成签到,获得积分10
13秒前
wei发布了新的文献求助10
13秒前
wasailinlaomu发布了新的文献求助10
13秒前
EchoH应助小绿孩不高兴采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
桂花载酒少年游完成签到 ,获得积分10
14秒前
16秒前
123发布了新的文献求助10
18秒前
情怀应助xin采纳,获得10
18秒前
无花果应助wei采纳,获得10
19秒前
19秒前
19秒前
opticalff发布了新的文献求助30
19秒前
桐桐应助柴胡采纳,获得10
20秒前
20秒前
20秒前
萧东辰完成签到,获得积分10
22秒前
asd完成签到,获得积分10
22秒前
lf-leo发布了新的文献求助10
22秒前
22秒前
25秒前
哦吼发布了新的文献求助10
25秒前
红火发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741989
求助须知:如何正确求助?哪些是违规求助? 5404909
关于积分的说明 15343645
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625021
邀请新用户注册赠送积分活动 1573893
关于科研通互助平台的介绍 1530838