DDAD: Detachable Crowd Density Estimation Assisted Pedestrian Detection

行人检测 计算机科学 行人 人工智能 推论 跳跃式监视 任务(项目管理) 计算机视觉 密度估算 光学(聚焦) 机器学习 工程类 数学 物理 光学 估计员 系统工程 统计 运输工程
作者
Wenxiao Tang,Kun Liu,M. Saad Shakeel,Hao Wang,Wenxiong Kang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:3
标识
DOI:10.1109/tits.2022.3222692
摘要

Detecting pedestrians is a challenging computer vision task, especially in the intelligent transportation system. Mainstream pedestrian detection methods purely utilize information of bounding boxes, which overlooks the role of other valuable attributes (e.g., head, head-shoulders, and keypoints) of pedestrians and leads to sub-optimal solutions. Some works leveraged these valuable attributes with a minor performance improvement at the expense of increased computational complexity during the inference phase. To alleviate this dilemma, we propose a simple yet effective method, namely Detachable crowd Density estimation Assisted pedestrian Detection (DDAD), which leverages the crowd density attributes to assist pedestrian detection in the real-world scenes (e.g., crowded scenes and small-scale pedestrian scenes). The advantage of the crowd density estimation is that it allows the network to focus more on the human head and the small-scale pedestrians, which improves the features representation of pedestrians heavily occluded or far from cameras. Our DDAD works on a principle of multi-task learning and can be seamlessly applied to both one-stage and two-stage pedestrian detectors by equipping them with an extra detachable branch of crowd density estimation. The equipped crowd density estimation branch is trained with the annotations derived from the existing pedestrian bounding box annotations, occurring no extra annotation cost. Moreover, it can be removed during the inference phase without sacrificing the inference speed. Extensive experiments conducted on two challenging datasets, i.e., CrowdHuman and CityPersons, demonstrate that our proposed DDAD achieves a significant improvement upon the state-of-the-art methods. Code is available at https://github.com/SCUT-BIP-Lab/ DDAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pp发布了新的文献求助10
1秒前
1秒前
白山茶应助红炉点血采纳,获得10
2秒前
Marvel发布了新的文献求助10
2秒前
Gxmmmm_应助HJJHJH采纳,获得10
3秒前
3秒前
bioglia完成签到,获得积分10
3秒前
肖肖完成签到,获得积分10
3秒前
斯文败类应助香茶菜甲素采纳,获得10
3秒前
王甜甜发布了新的文献求助10
5秒前
叶子发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
杨昊轩发布了新的文献求助10
7秒前
王焕玉发布了新的文献求助10
7秒前
lili发布了新的文献求助10
7秒前
9秒前
dcx完成签到,获得积分10
9秒前
学术噗噗完成签到,获得积分10
9秒前
mm发布了新的文献求助10
10秒前
10秒前
222发布了新的文献求助10
10秒前
斯文败类应助tangyuan采纳,获得10
11秒前
爆米花应助文静疾采纳,获得10
11秒前
12秒前
12秒前
yishuihan完成签到,获得积分10
14秒前
15秒前
15秒前
沉静画板发布了新的文献求助10
16秒前
18秒前
我请问呢发布了新的文献求助10
23秒前
乐乐应助补丁采纳,获得10
23秒前
善学以致用应助kento采纳,获得10
23秒前
Dean应助花痴的慕蕊采纳,获得50
23秒前
24秒前
cherish完成签到,获得积分10
25秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908385
求助须知:如何正确求助?哪些是违规求助? 4185042
关于积分的说明 12996504
捐赠科研通 3951722
什么是DOI,文献DOI怎么找? 2167149
邀请新用户注册赠送积分活动 1185586
关于科研通互助平台的介绍 1092179