DDAD: Detachable Crowd Density Estimation Assisted Pedestrian Detection

行人检测 计算机科学 行人 人工智能 推论 跳跃式监视 任务(项目管理) 计算机视觉 密度估算 光学(聚焦) 机器学习 工程类 数学 物理 光学 估计员 系统工程 统计 运输工程
作者
Wenxiao Tang,Kun Liu,M. Saad Shakeel,Hao Wang,Wenxiong Kang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:3
标识
DOI:10.1109/tits.2022.3222692
摘要

Detecting pedestrians is a challenging computer vision task, especially in the intelligent transportation system. Mainstream pedestrian detection methods purely utilize information of bounding boxes, which overlooks the role of other valuable attributes (e.g., head, head-shoulders, and keypoints) of pedestrians and leads to sub-optimal solutions. Some works leveraged these valuable attributes with a minor performance improvement at the expense of increased computational complexity during the inference phase. To alleviate this dilemma, we propose a simple yet effective method, namely Detachable crowd Density estimation Assisted pedestrian Detection (DDAD), which leverages the crowd density attributes to assist pedestrian detection in the real-world scenes (e.g., crowded scenes and small-scale pedestrian scenes). The advantage of the crowd density estimation is that it allows the network to focus more on the human head and the small-scale pedestrians, which improves the features representation of pedestrians heavily occluded or far from cameras. Our DDAD works on a principle of multi-task learning and can be seamlessly applied to both one-stage and two-stage pedestrian detectors by equipping them with an extra detachable branch of crowd density estimation. The equipped crowd density estimation branch is trained with the annotations derived from the existing pedestrian bounding box annotations, occurring no extra annotation cost. Moreover, it can be removed during the inference phase without sacrificing the inference speed. Extensive experiments conducted on two challenging datasets, i.e., CrowdHuman and CityPersons, demonstrate that our proposed DDAD achieves a significant improvement upon the state-of-the-art methods. Code is available at https://github.com/SCUT-BIP-Lab/ DDAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zora完成签到,获得积分10
刚刚
刚刚
1秒前
阿童木发布了新的文献求助10
1秒前
2秒前
weiliu完成签到,获得积分20
2秒前
2秒前
leo完成签到,获得积分10
2秒前
Leeyee完成签到,获得积分20
2秒前
楚楚楚完成签到,获得积分10
3秒前
Zora发布了新的文献求助10
3秒前
顾矜应助颜云尔采纳,获得10
3秒前
芝麻完成签到,获得积分10
4秒前
桐桐应助刻苦又亦采纳,获得10
5秒前
crystal发布了新的文献求助10
5秒前
充电宝应助achris采纳,获得20
5秒前
我是老大应助achris采纳,获得10
5秒前
CipherSage应助自觉白开水采纳,获得10
5秒前
leo发布了新的文献求助10
5秒前
爆米花应助虞访云采纳,获得10
5秒前
5秒前
5秒前
candy6663339完成签到,获得积分10
6秒前
加减法完成签到 ,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
852应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
BMG发布了新的文献求助30
7秒前
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
田様应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
7秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951455
求助须知:如何正确求助?哪些是违规求助? 3496905
关于积分的说明 11085004
捐赠科研通 3227298
什么是DOI,文献DOI怎么找? 1784400
邀请新用户注册赠送积分活动 868422
科研通“疑难数据库(出版商)”最低求助积分说明 801122