Design Strategy to Improve Memory Window in Ferroelectric Transistors With Oxide Semiconductor Channel

铁电性 晶体管 半导体 材料科学 极化(电化学) 电介质 氧化物 光电子学 电气工程 化学 工程类 物理化学 电压 冶金
作者
Ik‐Jyae Kim,Min-Kyu Kim,Jang‐Sik Lee
出处
期刊:IEEE Electron Device Letters [Institute of Electrical and Electronics Engineers]
卷期号:44 (2): 249-252 被引量:2
标识
DOI:10.1109/led.2022.3229680
摘要

Oxide semiconductors are promising channel materials for hafnia-based ferroelectric transistor memories because they can constrain the formation of an unwanted interfacial layer that can deteriorate the stability of the device. A major obstacle is the limited memory window, originating from insufficient polarization switching because ${n}$ -type oxide semiconductors cannot provide sufficient hole carriers to realize ferroelectric polarization switching. To solve this issue, a novel design strategy is proposed to achieve increased polarization switching while maintaining the stability of oxide semiconductor-based ferroelectric thin-film transistors (FeTFTs). By inserting an additional ${p}$ -type CuOx layer between the ${n}$ -type oxide semiconductor InZnOx and ferroelectric HfZrOx, increased polarization switching is achieved owing to the high electron and hole densities in the InZnOx and CuOx layers, respectively. Thus, a memory window of 4 V is achieved, which cannot be obtained using a single oxide-semiconductor channel. We also demonstrate that the proposed method is viable for three-dimensional ferroelectric NAND (3D FeNAND) devices. In 3D FeNAND, replacing the dielectric filler with ${p}$ -type CuOx maximizes polarization switching and enlarges the memory window. The results demonstrate a novel structure and fabrication method for high-performance FeTFTs for advanced 3D non-volatile memory applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助XL神放采纳,获得10
刚刚
minmin发布了新的文献求助10
刚刚
pterionGao发布了新的文献求助10
刚刚
刚刚
badjack完成签到,获得积分10
1秒前
1秒前
ggg发布了新的文献求助10
2秒前
3秒前
神经网络模型完成签到,获得积分10
4秒前
4秒前
今后应助初遇之时最暖采纳,获得10
4秒前
5秒前
5秒前
共享精神应助阿宋采纳,获得10
5秒前
5秒前
suda发布了新的文献求助10
5秒前
6秒前
idannn发布了新的文献求助10
7秒前
派大星完成签到,获得积分20
8秒前
噗哩大王发布了新的文献求助30
8秒前
养生坤坤发布了新的文献求助10
8秒前
hexinyu发布了新的文献求助10
9秒前
9秒前
10秒前
qq发布了新的文献求助10
11秒前
王小白发布了新的文献求助10
12秒前
Tonson应助roooosewang采纳,获得10
12秒前
12秒前
12秒前
12秒前
14秒前
那你撒泼发布了新的文献求助10
14秒前
小马关注了科研通微信公众号
14秒前
15秒前
ziwo发布了新的文献求助10
15秒前
sopha完成签到,获得积分10
16秒前
he发布了新的文献求助10
16秒前
浮游应助科研通管家采纳,获得10
17秒前
大个应助科研通管家采纳,获得30
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469432
求助须知:如何正确求助?哪些是违规求助? 4572532
关于积分的说明 14336014
捐赠科研通 4499397
什么是DOI,文献DOI怎么找? 2465032
邀请新用户注册赠送积分活动 1453564
关于科研通互助平台的介绍 1428091