Earliest Possible Global and Local Interpretation of Students’ Performance in Virtual Learning Environment by Leveraging Explainable AI

计算机科学 口译(哲学) 人工智能 优势和劣势 辍学(神经网络) 机器学习 点选流向 教育数据挖掘 数据科学 万维网 互联网 认识论 Web API Web建模 哲学 程序设计语言
作者
Muhammad Adnan,M. Irfan Uddin,Emel Khan,Fahd S. Alharithi,Samina Amin,Ahmad A. Alzahrani
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 129843-129864 被引量:21
标识
DOI:10.1109/access.2022.3227072
摘要

In this research study, we propose an Explainable Artificial Intelligence (XAI) model that provides the earliest possible global and local interpretation of students' performance at various stages of course length. Global and local interpretation is provided in such a way that the prediction accuracy of a single local observation is close to the model's overall prediction accuracy. For the earliest possible understanding of student performance, local and global interpretation is provided at 20%, 40%, 60%, 80%, and 100% of course length. Machine Learning (ML) and Deep Learning (DL) which are subfields of Artificial Intelligence (AI) have recently emerged to assist all educational institution's in predicting the performance, engagement, and dropout rate of online students. Unfortunately, traditional ML and DL techniques lack in providing data analysis results in an understandable human way. Explainable AI (XAI), a new branch of AI, can be used in educational settings, specifically in VLEs, to provide the instructor with the study performance results of thousands or even millions of online students in a human-understandable way. Thus, unlike black box approaches such as traditional ML and DL techniques, XAI can help instructors to interpret the strengths and weaknesses of an individual student, providing them with timely personalized feedback and guidance. Various traditional and various ensemble ML algorithms were trained on demographic, clickstream, and assessment features to determine which algorithm gives the best performance result. The best-performing ML algorithm was ultimately selected and provided to the XAI model as an input for local and global interpretation of students' study behavior at various percentages of course length. We have used various XAI tools to give students' performance reports to instructors, in an explicable human way, at different stages of course length. The intermediate data analysis and performance reports will help instructors and all key stakeholders in decision-making and optimally facilitate online students.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
卡卡可可完成签到,获得积分10
刚刚
刚刚
暖暖完成签到,获得积分10
刚刚
linlin完成签到,获得积分10
1秒前
zhxs发布了新的文献求助10
1秒前
ABC发布了新的文献求助10
2秒前
甜蜜阑悦发布了新的文献求助10
2秒前
2秒前
万能图书馆应助源源元采纳,获得10
2秒前
MchemG应助小海豹采纳,获得10
3秒前
研友_LMo56Z发布了新的文献求助10
3秒前
Jasper应助嘻嘻采纳,获得10
4秒前
小马甲应助xxxx采纳,获得10
4秒前
zz完成签到,获得积分20
4秒前
5秒前
6秒前
lmc完成签到,获得积分10
6秒前
6秒前
lin完成签到,获得积分10
6秒前
6秒前
小蘑菇应助zhangpeng采纳,获得10
7秒前
elerain完成签到,获得积分10
8秒前
陶招发布了新的文献求助10
9秒前
FashionBoy应助甜蜜阑悦采纳,获得10
9秒前
FashionBoy应助自觉南风采纳,获得10
9秒前
10秒前
10秒前
Rondab应助PG采纳,获得10
10秒前
10秒前
nuannuan发布了新的文献求助10
11秒前
大神装发布了新的文献求助10
11秒前
白菜发布了新的文献求助10
11秒前
12秒前
12秒前
wangjue完成签到,获得积分10
13秒前
ABC完成签到,获得积分10
13秒前
Chaimengdi发布了新的文献求助10
13秒前
Anovel完成签到,获得积分10
14秒前
whh发布了新的文献求助10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954916
求助须知:如何正确求助?哪些是违规求助? 3501031
关于积分的说明 11101644
捐赠科研通 3231451
什么是DOI,文献DOI怎么找? 1786425
邀请新用户注册赠送积分活动 870050
科研通“疑难数据库(出版商)”最低求助积分说明 801785