Earliest Possible Global and Local Interpretation of Students’ Performance in Virtual Learning Environment by Leveraging Explainable AI

计算机科学 口译(哲学) 人工智能 优势和劣势 辍学(神经网络) 机器学习 点选流向 教育数据挖掘 数据科学 万维网 互联网 哲学 认识论 Web API Web建模 程序设计语言
作者
Muhammad Adnan,M. Irfan Uddin,Emel Khan,Fahd S. Alharithi,Samina Amin,Ahmad A. Alzahrani
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 129843-129864 被引量:16
标识
DOI:10.1109/access.2022.3227072
摘要

In this research study, we propose an Explainable Artificial Intelligence (XAI) model that provides the earliest possible global and local interpretation of students' performance at various stages of course length. Global and local interpretation is provided in such a way that the prediction accuracy of a single local observation is close to the model's overall prediction accuracy. For the earliest possible understanding of student performance, local and global interpretation is provided at 20%, 40%, 60%, 80%, and 100% of course length. Machine Learning (ML) and Deep Learning (DL) which are subfields of Artificial Intelligence (AI) have recently emerged to assist all educational institution's in predicting the performance, engagement, and dropout rate of online students. Unfortunately, traditional ML and DL techniques lack in providing data analysis results in an understandable human way. Explainable AI (XAI), a new branch of AI, can be used in educational settings, specifically in VLEs, to provide the instructor with the study performance results of thousands or even millions of online students in a human-understandable way. Thus, unlike black box approaches such as traditional ML and DL techniques, XAI can help instructors to interpret the strengths and weaknesses of an individual student, providing them with timely personalized feedback and guidance. Various traditional and various ensemble ML algorithms were trained on demographic, clickstream, and assessment features to determine which algorithm gives the best performance result. The best-performing ML algorithm was ultimately selected and provided to the XAI model as an input for local and global interpretation of students' study behavior at various percentages of course length. We have used various XAI tools to give students' performance reports to instructors, in an explicable human way, at different stages of course length. The intermediate data analysis and performance reports will help instructors and all key stakeholders in decision-making and optimally facilitate online students.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
应三问完成签到 ,获得积分10
刚刚
qy发布了新的文献求助10
1秒前
1秒前
zzll0301完成签到,获得积分10
1秒前
1秒前
小二郎应助骄傲yy采纳,获得10
2秒前
猪猪hero应助嘟嘟豆806采纳,获得10
2秒前
2秒前
2秒前
在水一方应助张丁采纳,获得10
4秒前
4秒前
4秒前
谢会会发布了新的文献求助10
5秒前
机灵山河发布了新的文献求助10
5秒前
张正发布了新的文献求助10
6秒前
Lily完成签到 ,获得积分10
7秒前
小蘑菇应助自信的松鼠采纳,获得10
7秒前
8秒前
8秒前
8秒前
8秒前
9秒前
热心的皮皮虾完成签到 ,获得积分20
9秒前
11秒前
骄傲yy发布了新的文献求助10
11秒前
13秒前
SciGPT应助香菜拌辣椒采纳,获得10
14秒前
14秒前
sheh发布了新的文献求助10
14秒前
张丁发布了新的文献求助10
15秒前
赵赵赵发布了新的文献求助10
15秒前
南霖发布了新的文献求助10
17秒前
17秒前
情怀应助曾经二娘采纳,获得10
17秒前
陈牛逼完成签到,获得积分20
18秒前
18秒前
MADKAI发布了新的文献求助10
19秒前
19秒前
21秒前
22秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Population Genetics 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3495949
求助须知:如何正确求助?哪些是违规求助? 3080935
关于积分的说明 9165135
捐赠科研通 2773913
什么是DOI,文献DOI怎么找? 1522240
邀请新用户注册赠送积分活动 705737
科研通“疑难数据库(出版商)”最低求助积分说明 703085