Powertrain Components Aging Model Selection for Energy Efficient Vehicles: Selection Strategy and Challenges

动力传动系统 选择(遗传算法) 计算机科学 汽车工程 人工智能 工程类 扭矩 物理 热力学
作者
Md Ragib Rownak,Athar Hanif,Qadeer Ahmed,Muhammad Qaisar Fahim,Hamza Anwar,Hui Li,Dat Le,Matthew N. Nelson
出处
期刊:SAE technical paper series 卷期号:1
标识
DOI:10.4271/2025-01-8541
摘要

<div class="section abstract"><div class="htmlview paragraph">The long-term performance of powertrain components in energy-efficient vehicles, particularly in Class 8 heavy-duty applications, is crucial for sustaining energy efficiency. However, these components degrade over time, impacting performance and highlighting the need for appropriate aging models to estimate the impact of aging. This study aims to identify and select appropriate aging models for two critical powertrain components: battery and electric machine. Through a comprehensive literature review, the primary aging processes, key influencing factors, and available aging models for these components are identified. A selection matrix is established, considering the model complexity, the model accuracy, and the volume of data required while maintaining the desired precision for the powertrain component models. Based on the selection matrix, an appropriate battery aging model is chosen for the vehicle’s battery. This model was selected for its ability to effectively capture the aging process and estimate capacity degradation with reasonable accuracy while remaining computationally efficient. For the electric machine, a thermal-based aging model is chosen to account for dynamic operations and temperature effects, which are crucial for understanding the aging behavior of the electric machine. The selected battery aging model is calibrated and validated using experimental cycling and calendar aging datasets. The performance metric, relative standard error of prediction (RSEP), is used to measure the efficacy of this model compared to the experimental data. The RSEP value obtained from the cycling aging dataset is 14.05%, while the value for the calendar aging dataset is 31.34%. The electric machine aging model is implemented using the temperature profile obtained from an experimental dataset.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卷卷完成签到,获得积分10
3秒前
灰色铅笔发布了新的文献求助10
4秒前
蜡笔小新完成签到 ,获得积分10
6秒前
今后应助陈曦采纳,获得10
7秒前
兰西完成签到,获得积分10
10秒前
我爱学习完成签到 ,获得积分10
10秒前
zcj完成签到,获得积分10
11秒前
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
wangle_17应助科研通管家采纳,获得10
11秒前
腼腆的修杰完成签到,获得积分10
12秒前
walden完成签到,获得积分10
19秒前
21秒前
6633发布了新的文献求助10
24秒前
ABC发布了新的文献求助10
24秒前
26秒前
思思完成签到,获得积分10
26秒前
动漫大师发布了新的文献求助10
27秒前
bkagyin应助KaK采纳,获得10
30秒前
lululala发布了新的文献求助10
31秒前
32秒前
33秒前
37秒前
38秒前
39秒前
lululala完成签到,获得积分10
40秒前
40秒前
Hey发布了新的文献求助10
41秒前
syyw2021发布了新的文献求助30
44秒前
细心可乐完成签到 ,获得积分10
45秒前
KaK发布了新的文献求助10
45秒前
zzz驳回了Hello应助
46秒前
灵活又幸福的胖完成签到,获得积分10
56秒前
吃猫的鱼发布了新的文献求助10
56秒前
一坨完成签到,获得积分10
56秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738565
求助须知:如何正确求助?哪些是违规求助? 3281918
关于积分的说明 10026959
捐赠科研通 2998717
什么是DOI,文献DOI怎么找? 1645425
邀请新用户注册赠送积分活动 782788
科研通“疑难数据库(出版商)”最低求助积分说明 749931