Strong and Tough Water-Tolerant Conductive Eutectogels with Phase-Separated Hydrophilic/Hydrophobic Dual Ionic Channels.

材料科学 离子键合 导电体 相(物质) 对偶(语法数字) 化学工程 纳米技术 离子 复合材料 有机化学 化学 艺术 文学类 工程类
作者
Hanbing Ma,Min Wang,Jiawen Hou,Xiaoliang Wang,Pingchuan Sun,Fenfen Wang
出处
期刊:PubMed 卷期号:: e2500770-e2500770
标识
DOI:10.1002/adma.202500770
摘要

Eutectogels are emerging as the next-generation stretchable electronics due to their superior ionic conductivity, non-volatility, and cost-effectiveness. Nevertheless, most eutectogels suffer from weak mechanical strength and toughness and pronounced hygroscopicity. Herein, a strategy is proposed to fabricate phase-separated eutectogels with dual ionic channels (PSDIC-gel), which exhibit exceptional integrative properties, especially water resistance. By blending hydrophilic/hydrophobic polymerizable deep eutectic solvents, dual ionic channels spontaneously form via polymerization-induced phase separation. The hydrophilic poly(acrylic acid) (PAA) phase containing Li+-channels, rich in hydrogen bonding and ion-dipole interactions, provides mechanical strength and conductivity. The hydrophobic poly(hexafluorobutyl acrylate) (PHFBA) phase incorporating cholinium cation (Ch+) channels enhances toughness, conductivity, and water resistance. Adjusting the phase ratio yields a microphase-separated transparent eutectogel with high tensile strength (6.03 MPa), toughness (16.18 MJ m-3), excellent ionic conductivity (1.6 × 10-3 S m-1), strong substrate adhesion, and rapid room-temperature self-healing. Solid-state NMR reveals the conductive mechanism and the phase-separated structure featuring dual ionic channels in PSDIC-gels, advancing the understanding of complex ionic interactions at the atomic level. The PSDIC-gel enables a flexible triboelectric nanogenerator for accurate real-time self-powered human motion sensing. This work advances eutectogel design through structure-property engineering, offering a universal strategy to reconcile mechanical robustness, environmental suitability, and ionic conductivity for wearable electronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
higgskk关注了科研通微信公众号
1秒前
科研通AI5应助紫帘沐琛采纳,获得10
2秒前
小蘑菇应助海鸥跳海采纳,获得10
3秒前
3秒前
senpaiser应助轻松的冬云采纳,获得200
3秒前
agoni发布了新的文献求助10
4秒前
5秒前
斯文败类应助可爱的柜子采纳,获得10
7秒前
aoxiangcaizi12完成签到,获得积分10
8秒前
Owen应助老迟到的冬萱采纳,获得10
8秒前
10秒前
负责的方盒完成签到,获得积分10
12秒前
sasha发布了新的文献求助10
13秒前
科研通AI5应助舒适从蓉采纳,获得10
13秒前
13秒前
14秒前
Chem完成签到,获得积分10
15秒前
今后应助活力夜白采纳,获得10
16秒前
Lucas应助温暖天与采纳,获得10
16秒前
深情安青应助类凊采纳,获得10
16秒前
一星如月发布了新的文献求助10
17秒前
17秒前
晚心发布了新的文献求助10
18秒前
张秋实完成签到,获得积分10
19秒前
higgskk发布了新的文献求助10
20秒前
20秒前
20秒前
完美世界应助Rena采纳,获得10
21秒前
紫帘沐琛发布了新的文献求助10
21秒前
22秒前
23秒前
23秒前
乐乐应助默默飞珍采纳,获得10
24秒前
科研通AI5应助LHL采纳,获得10
24秒前
26秒前
26秒前
745789完成签到 ,获得积分10
26秒前
27秒前
28秒前
紫帘沐琛完成签到,获得积分10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542861
求助须知:如何正确求助?哪些是违规求助? 3120134
关于积分的说明 9341680
捐赠科研通 2818200
什么是DOI,文献DOI怎么找? 1549414
邀请新用户注册赠送积分活动 722131
科研通“疑难数据库(出版商)”最低求助积分说明 712978