The electrochemical oxygen reduction reaction (ORR) offers an alluring and sustainable alternative to the traditional anthraquinone process for hydrogen peroxide (H₂O₂) synthesis. However, challenges remain in developing scalable electrocatalysts and cost-effective reactors for high-purity H₂O₂ production. This study introduces a simple yet effective mechanical mixing method to fabricate a hybrid electrocatalyst from oxidized carbon nanotubes and layered double hydroxides (LDHs). This easily accessible and low-cost catalyst achieves near-perfect Faradaic efficiency (∼100%) with low overpotentials of 73 mV at 10 mA cm⁻2 and 588 mV at 400 mA cm⁻2 in a solid electrolyte cell. Through theoretical calculations and in-situ analyses, we uncover the pivotal role played by the LDH co-catalyst in fine-tuning the local pH at the catalyst/solid-electrolyte interface that drives both the activity and selectivity. We also design a low-cost solid-state reactor using cation-exchange resin (CER) as both a proton conductor and a microchannel for efficient mass transfer, achieving a production rate of 5.29 mmol cm⁻2 h⁻¹ and continuous output concentrations of 11.8 wt.% H₂O₂. Scaled to an industrial area of 2 × 100 cm2, the pilot reactor achieves an impressive H₂O₂ production rate of approximately 127.0 mmol h⁻¹ at 15 A, marking a significant advancement in sustainable H₂O₂ production.