清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Co‐training semi‐supervised medical image segmentation based on pseudo‐label weight balancing

分割 计算机科学 加权 人工智能 机器学习 正规化(语言学) 模式识别(心理学) 图像分割 钥匙(锁) 医学 计算机安全 放射科
作者
Jiashi Zhao,Yao Li,Cheng Wang,Miao Yu,Weili Shi,Jianhua Liu,Zhengang Jiang
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17712
摘要

Major challenges in current semi-supervised segmentation methods: (1) The complementary nature of information in pseudo-label: a key limitation of consistent regularization methods is the tendency of sub-networks to converge to the consensus case early on, leading to the degradation of co-trained models into self-trained models, whereas disagreement between sub-networks is important for joint training. (2) Quantity-quality weighting imbalance in pseudo-label methods: threshold-based pseudo-label is to train the model with pseudo-labels whose predicted confidence is higher than a hard threshold. In contrast, other pseudo-labels are simply ignored. This study aims to propose a semi-supervised model based on pseudo-labeled weight balancing for medical image segmentation tasks for the above-mentioned problems. We adopted a truncated Gaussian function weight balancing method based on the marginal hypothesis distribution to generate high-quality pseudo-labels while maintaining a high utilization rate of pseudo-labels, and based on which we applied a uniform alignment strategy to solve the pseudo-label imbalance problem due to the difference in the learning difficulty of different classes. In addition, to address the problem that self-training algorithms rely too much on the quality of pseudo-labels generated, we inherit the idea of knowledge refinement and integrate the mean teacher model of co-training, thus proposing a novel semi-supervised medical image segmentation framework, SCMT (Semi-supervised Co-training Mean Teacher), which is aimed at improving the existing self-training algorithms or co-training algorithms limitations of a single model. We validate the effectiveness of the method by performing experimental evaluation on two commonly used benchmark medical datasets, LA, and Pancreas-CT, by using 10%/20% labeled data and 90%/80% unlabeled data for training. On the LA dataset, the model obtained Hausdorff distance (HD) of 6.65 mm/5.63 mm, average symmetric surface distance of 1.91 mm/0.02 mm, Dice similarity coeffcient of 90.09%/91.05%, and Jaccard of 81.08%/83.64%. On the Pancreas-CT dataset, the model obtained HD of 12.71 mm/6.63 mm, average symmetric surface distance of 2.01 mm/1.27 mm, Dice similarity coeffcient of 74.64%/81.77% and Jaccard of 60.48%/69.51%. The results show that our method not only outperforms existing semi-supervised segmentation methods but also significantly improves segmentation performance and reduces the dependence on labeled data to achieve consistent and stable prediction results. We proposed a weight-balanced co-trained cross-consistent semi-supervised model SCMT for semi-supervised segmentation of medical images, which consists of a CMT (Co-training Mean Teacher) structure and quantity-quality-balanced pseudo-label-guided mutual consistency constraints. Compared with other models, we effectively exploit the challenging region and can more accurately capture the contours and finer details of the segmented objects without any shape or boundary constraints, resulting in highly accurate and detail-rich segmentation results. In addition, we conduct comparative experiments with existing semi-supervised models, and the experimental results show that our proposed model is capable of handling complex structures and segmenting details commonly missed by other methods. The segmentation results obtained are relatively stable and consistent and have certain advantages in improving the performance of surface segmentation. Code is available at: https://github.com/zhaojiashi/SCMT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
紫熊发布了新的文献求助10
1秒前
5秒前
9秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
紫熊完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
29秒前
42秒前
hhh2018687完成签到,获得积分10
43秒前
量子星尘发布了新的文献求助10
49秒前
52秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
clairevox完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
传奇3应助clairevox采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助30
1分钟前
隐形大白完成签到 ,获得积分10
1分钟前
1分钟前
sxx发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
小美酱完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
poki完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
香蕉觅云应助烟消云散采纳,获得10
3分钟前
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661079
求助须知:如何正确求助?哪些是违规求助? 3222214
关于积分的说明 9744081
捐赠科研通 2931862
什么是DOI,文献DOI怎么找? 1605234
邀请新用户注册赠送积分活动 757780
科研通“疑难数据库(出版商)”最低求助积分说明 734538