Can Coarse-Grained Molecular Dynamics Simulations Predict Pharmaceutical Crystal Growth?

分子动力学 计算机科学 动力学(音乐) Crystal(编程语言) 统计物理学 化学 计算化学 物理 声学 程序设计语言
作者
Liu Shi,Futianyi Wang,Taraknath Mandal,Ronald G. Larson
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
标识
DOI:10.1021/acs.jctc.5c00040
摘要

To investigate the ability of coarse-grained molecular dynamics simulations to predict the relative growth rates of crystal facets of pharmaceutical molecules, we apply two coarse-graining strategies to two drug molecules, phenytoin and carbamazepine. In the first method, we map an atomistic model to a MARTINI-level coarse-grained (CG) force field that uses 2 or 3 heavy atoms per bead. This is followed by applying Particle Swarm Optimization (PSO), a global optimum searching algorithm, to the CG Lennard-Jones intermolecular potentials to fit the radial distribution functions of both the crystalline and melt structures. In the second, a coarser-grained method, we map 5 or more heavy atoms into one bead with the help of the Iterative Boltzmann Inversion (IBI) method to derive a tabulated longer-range force field (FF). Simulations using the FF's derived from both strategies were able to stabilize the crystal in the correct structure and to predict crystal growth from the melt with modest computational resources. We evaluate the advantages and limitations of both methods and compare the relative growth rates of various facets of both drug crystals with those predicted by the Bravais–Friedel–Donnay–Harker (BFDH) and attachment energy (AE) theories. While all methods, except for the simulations conducted with the coarser-grained IBI-generated model, produced similarly good results for phenytoin, the finer-grained PSO-generated FF using MARTINI mapping rules outperformed the other methods in its prediction of the facet growth rates and resulting crystalline morphology for carbamazepine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
淡定的黑米完成签到,获得积分10
1秒前
2秒前
2秒前
5秒前
HU发布了新的文献求助10
7秒前
我有柳叶刀完成签到,获得积分10
8秒前
白鹤卧雪完成签到,获得积分10
8秒前
123完成签到,获得积分10
8秒前
9秒前
ZXC发布了新的文献求助10
9秒前
完美世界应助冷傲的访曼采纳,获得10
9秒前
10秒前
Julien完成签到,获得积分10
11秒前
满意剑成发布了新的文献求助10
12秒前
冷酷的番茄完成签到,获得积分10
13秒前
13秒前
yuchao_0110完成签到,获得积分10
13秒前
14秒前
lixiangrui110完成签到,获得积分10
15秒前
天天快乐应助if_tiand采纳,获得10
16秒前
酷炫半青发布了新的文献求助10
17秒前
18秒前
CipherSage应助ep_bhw采纳,获得10
19秒前
19秒前
通行证关注了科研通微信公众号
19秒前
好名字发布了新的文献求助10
19秒前
20秒前
Lucas应助束负允三金采纳,获得10
20秒前
wanci应助Julien采纳,获得10
22秒前
科研通AI5应助qy采纳,获得10
22秒前
科研通AI5应助qy采纳,获得10
22秒前
Owen应助太渊采纳,获得10
23秒前
fdghj发布了新的文献求助10
23秒前
壮观季节发布了新的文献求助10
23秒前
香蕉谷芹发布了新的文献求助10
25秒前
ann发布了新的文献求助10
26秒前
共享精神应助调皮冰旋采纳,获得10
26秒前
呆萌鱼完成签到,获得积分10
26秒前
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3651948
求助须知:如何正确求助?哪些是违规求助? 3216156
关于积分的说明 9710947
捐赠科研通 2923898
什么是DOI,文献DOI怎么找? 1601432
邀请新用户注册赠送积分活动 754152
科研通“疑难数据库(出版商)”最低求助积分说明 732987